Browse > Article
http://dx.doi.org/10.12989/sem.2020.74.2.297

Mechanical analysis of functionally graded spherical panel resting on elastic foundation under external pressure  

Cao, Yan (School of Mechatronic Engineering and Shaanxi Key Laboratory of Non-Traditional Machining, Xi'an Technological University)
Qian, Xueming (School of Mechatronic Engineering and Shaanxi Key Laboratory of Non-Traditional Machining, Xi'an Technological University)
Fan, Qingming (School of Mechatronic Engineering and Shaanxi Key Laboratory of Non-Traditional Machining, Xi'an Technological University)
Ebrahimi, Farbod (Young Researchers and Elite Club, Tehran Branch, Islamic Azad University)
Publication Information
Structural Engineering and Mechanics / v.74, no.2, 2020 , pp. 297-311 More about this Journal
Abstract
The main purpose of this study is to analyze the effects of external pressure on the vibration and buckling of functionally graded (FG) spherical panels resting of elastic medium. The material characteristics of the FG sphere continuously vary through the thickness direction based on the power-law rule. In accordance with first-order shear deformation shell theory and by the use of Ritz formulation the governing equations are presented. In this regard, the beam functions are applied in two-dimensions for different sets of boundary supports. The Winkler and Pasternak models of elastic foundations are also taken into account. In order to show the validity and applicability of the presented formulation, various comparison studies are given. Furthermore, a diverse range of numerical results is reported to check the impacts of geometrical and material parameters along with external pressure on the vibration and buckling analysis of FG spherical panels.
Keywords
functionally graded materials; spherical panel; vibration; buckling; beam functions;
Citations & Related Records
Times Cited By KSCI : 13  (Citation Analysis)
연도 인용수 순위
1 Ghannad, M., Nejad, M. Z., Rahimi, G. H., and Sabouri, H. (2012), "Elastic analysis of pressurized thick truncated conical shells made of functionally graded materials", Struct. Eng. Mech., 43(1), 105-126. https://doi.org/10.12989/sem.2012.43.1.105.   DOI
2 Hasrati, E., Ansari, R., and Torabi, J. (2018), "A novel numerical solution strategy for solving nonlinear free and forced vibration problems of cylindrical shells", Appl. Math. Modelling, 53, 653-672. https://doi.org/10.1016/j.apm.2017.08.027.   DOI
3 Ansari, R., Torabi, J., and Shojaei, M. F. (2016), "Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method", Europe J. Mech. A/Solids, 60, 166-182. https://doi.org/10.1016/j.euromechsol.2016.07.003.   DOI
4 Bich, D. H., and Van Tung, H. (2011), "Non-linear axisymmetric response of functionally graded shallow spherical shells under uniform external pressure including temperature effects"., J Non-Linear Mech., 46(9), 1195-1204. https://doi.org/10.1016/j.ijnonlinmec.2011.05.015.   DOI
5 Bich, D. H., Van Dung, D., and Nam, V. H. (2013), "Nonlinear dynamic analysis of eccentrically stiffened imperfect functionally graded doubly curved thin shallow shells", Compos. Struct., 96, 384-395.https://doi.org/10.1016/j.compstruct.2012.10.009   DOI
6 Bich, D. H., and Phuong, N. T. (2013), "Buckling Analysis of Functionally Graded Annular Spherical Shells and Segments Subjected to Mechanic Loads", VNU J. Sci. Mathematics-Physics, 29(3), https://js.vnu.edu.vn/MaP/article/view/869.
7 Karroubi, R., and Irani-Rahaghi, M. (2019), "Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: free vibration analysis", Appl. Math. Mech., 40(4), 563-578. https://doi.org/10.1007/s10483-019-2469-8.   DOI
8 Heydarpour, Y., Aghdam, M. M., and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200.https://doi.org/10.1016/j.compstruct.2014.06.023.   DOI
9 Jung, W. Y., Han, S. C., Lee, W. H., and Park, W. T. (2016), "Postbuckling analysis of laminated composite shells under shear loads", Steel Compos. Struct., 21(2), 373-394. https://doi.org/10.12989/scs.2016.21.2.373.   DOI
10 Kar, V. R., and Panda, S. K. (2015), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., 53(4), 661-679. http://dx.doi.org/10.12989/sem.2015.53.4.661.   DOI
11 Khayat, M., Poorveis, D., and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., 22(2), 301-321. https://doi.org/10.12989/scs.2016.22.2.301.   DOI
12 Loy, C. T., Lam, K. Y., and Reddy, J. N. (1999), "Vibration of functionally graded cylindrical shells", J. Mech. Sci., 41(3), 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.   DOI
13 Xie, X., Zheng, H., and Jin, G. (2015), "Free vibration of four-parameter functionally graded spherical and parabolic shells of revolution with arbitrary boundary conditions", Compos. Part B Eng., 77, 59-73. https://doi.org/10.1016/j.compositesb.2015.03.016.   DOI
14 Tornabene, F. (2009), "Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution", Comput. Methods Appl. Mech. Eng., 198(37-40), 2911-2935. https://doi.org/10.1016/j.cma.2009.04.011.   DOI
15 Wang, Q., Pang, F., Qin, B., and Liang, Q. (2018), "A unified formulation for free vibration of functionally graded carbon nanotube reinforced composite spherical panels and shells of revolution with general elastic restraints by means of the Rayleigh-Ritz method", Polymer Compos., 39(S2), E924-E944. https://doi.org/10.1002/pc.24339.   DOI
16 Wu, Y., Xing, Y., and Liu, B. (2018), "Analysis of isotropic and composite laminated plates and shells using a differential quadrature hierarchical finite element method", Compos. Struct., 205, 11-25. https://doi.org/10.1016/j.compstruct.2018.08.095   DOI
17 Ye, T., Jin, G., and Su, Z. (2014), "Three-dimensional vibration analysis of laminated functionally graded spherical shells with general boundary conditions", Compos. Struct., 116, 571-588. https://doi.org/10.1016/j.compstruct.2014.05.046.   DOI
18 Naghsh, A., Saadatpour, M. M., and Azhari, M. (2015), "Free vibration analysis of stringer stiffened general shells of revolution using a meridional finite strip method", Thin-Walled Struct., 94, 651-662. https://doi.org/10.1016/j.tws.2015.05.015.   DOI
19 Mao, Y. Q., Fu, Y. M., Chen, C. P., and Li, Y. L. (2011), "Nonlinear dynamic response for functionally graded shallow spherical shell under low velocity impact in thermal environment", Appl. Math. Modelling, 35(6), 2887-2900. https://doi.org/10.1016/j.apm.2010.12.012.   DOI
20 Mercan, K., Demir, C., and Civalek, O. (2016), "Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique", Curved Layered Struct., 3(1), 2353-7396. https://doi.org/10.1515/cls-2016-0007.
21 Patel, B. P., Gupta, S. S., Loknath, M. S., and Kadu, C. P. (2005), "Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory", Compos. Struct., 69(3), 259-270. https://doi.org/10.1016/j.compstruct.2004.07.002.   DOI
22 Shahsiah, R., Eslami, M. R., and Naj, R. (2006), "Thermal instability of functionally graded shallow spherical shell", J. Thermal Stresses, 29(8), 771-790. https://doi.org/10.1080/01495730600705406.   DOI
23 Shen, H. S., and Xiang, Y. (2012), "Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments", Comput. Methods Appl. Mech. Eng., 213, 196-205. https://doi.org/10.1016/j.cma.2011.11.025.   DOI
24 Sofiyev, A. H., Hui, D., Huseynov, S. E., Salamci, M. U., and Yuan, G. Q. (2016), "Stability and vibration of sandwich cylindrical shells containing a functionally graded material core with transverse shear stresses and rotary inertia effects", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230(14), 2376-2389. https://doi.org/10.1177/0954406215593570.   DOI
25 Su, Z., Jin, G., Shi, S., and Ye, T. (2014b), "A unified accurate solution for vibration analysis of arbitrary functionally graded spherical shell segments with general end restraints", Compos. Struct., 111, 271-284.   DOI
26 Song, M. K., Kim, S. H., and Choi, C. K. (2006), "Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures", Struct. Eng. Mech., 22(5), 575-598. https://doi.org/10.12989/sem.2006.22.5.575.   DOI
27 Striz, A. G., Chen, W. L., and Bert, C. W. (1997), "Free vibration of plates by the high accuracy quadrature element method", J. Sound Vib., 202(5), 689-702. https://doi.org/10.1006/jsvi.1996.0846.   DOI
28 Su, Z., Jin, G., Shi, S., Ye, T., and Jia, X. (2014a), "A unified solution for vibration analysis of functionally graded cylindrical, conical shells and annular plates with general boundary conditions", J. Mech. Sci., 80, 62-80. https://doi.org/10.1016/j.ijmecsci.2014.01.002.   DOI
29 Su, Z., Jin, G., and Ye, T. (2014c), "Free vibration analysis of moderately thick functionally graded open shells with general boundary conditions", Compos. Struct., 117, 169-186. https://doi.org/10.1016/j.compstruct.2014.01.006.   DOI
30 Thomas, B., and Roy, T. (2016), "Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures", Acta Mechanica, 227(2), 581-599. https://doi.org/10.1007/s00707-015-1479-z.   DOI
31 Torabi, J., and Ansari, R. (2018), "Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells", Struct. Eng. Mech., 68(3), 313-323. http://dx.doi.org/10.12989/sem.2018.68.3.313.   DOI
32 Civalek, O. (2008), "Vibration analysis of conical panels using the method of discrete singular convolution", Communications Numerical Methods Eng., 24(3), 169-181. https://doi.org/10.1002/cnm.961.   DOI
33 Torabi, J., and Ansari, R. (2018), "A higher-order isoparametric superelement for free vibration analysis of functionally graded shells of revolution", Thin-Walled Struct., 133, 169-179. https://doi.org/10.1016/j.tws.2018.09.040.   DOI
34 Civalek, O., and Ulker, M. (2004), "Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates", Struct. Eng. Mech., 17(1), 1-14. https://doi.org/10.12989/sem.2004.17.1.001.   DOI
35 Civalek, O. (2006), "Free vibration analysis of composite conical shells using the discrete singular convolution algorithm", Steel Compos. Struct., 6(4), 353. https://doi.org/10.12989/scs.2006.6.4.353.   DOI
36 Civalek, O. (2007), "Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC)", Struct. Eng. Mech., 25(1), 127-130. https://doi.org/10.12989/sem.2007.25.1.127.   DOI
37 Civalek, O., and Acar, M. H. (2007), "Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations", J. Pressure Vessels Piping, 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001.   DOI
38 Foroutan, K., Shaterzadeh, A., and Ahmadi, H. (2018), "Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression", Struct. Eng. Mech., 66(3), 295-303. http://dx.doi.org/10.12989/sem.2018.66.3.295.   DOI
39 Darilmaz, K. (2017), "Static and free vibration behaviour of orthotropic elliptic paraboloid shells", Steel Compos. Struct., 23(6), 737-746. https://doi.org/10.12989/scs.2017.23.6.737.   DOI
40 Foroughi, H., and Azhari, M. (2014), "Mechanical buckling and free vibration of thick functionally graded plates resting on elastic foundation using the higher order B-spline finite strip method", Meccanica, 49(4), 981-993. https://doi.org/10.1007/s11012-013-9844-2.   DOI
41 Ganapathi, M. (2007), "Dynamic stability characteristics of functionally graded materials shallow spherical shells", Compos. Struct., 79(3), 338-343. https://doi.org/10.1016/j.compstruct.2006.01.012.   DOI
42 Ansari, R., and Torabi, J. (2016), "Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading", Compos. Part B Eng., 95, 196-208. https://doi.org/10.1016/j.compositesb.2016.03.080.   DOI
43 ACI 228.2R-13. (2013), "Nondestructive test methods for evaluation of concrete in structures", American Concrete Institute Report, Farmington Hills, U.S.A.
44 Akgoz, B., and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.   DOI
45 Alijani, F., Amabili, M., Karagiozis, K., and Bakhtiari-Nejad, F. (2011), "Nonlinear vibrations of functionally graded doubly curved shallow shells", J. Sound Vib., 330(7), 1432-1454. https://doi.org/10.1016/j.jsv.2010.10.003.   DOI