Browse > Article
http://dx.doi.org/10.12989/sem.2019.72.4.433

Nonlinear static analysis of laminated composite beams under hygro-thermal effect  

Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University)
Publication Information
Structural Engineering and Mechanics / v.72, no.4, 2019 , pp. 433-441 More about this Journal
Abstract
In this paper, geometrically nonlinear static analysis of laminated composite beams is investigated under hygrothermal effect. In the solution of problem, the finite element method is used within the first shear beam theory. Total Lagrangian approach is used nonlinear kinematic model. The geometrically nonlinear formulations are developed for the laminated beams with hygro-thermal effects. In the nonlinear solution of the problem, the Newton-Raphson method is used with incremental displacement. In order to verify of obtained formulations, a comparison study is performed. The effects of the fiber orientation angles, the stacking sequence of laminates, temperature rising and moisture changes on the nonlinear static displacements and configurations of the composite laminated beam are investigated in the numerical results.
Keywords
hygro-thermal effect; nonlinear analysis; laminated composite beams; total lagragian; finite element method;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Farokhi, H., Ghayesh, M. H., Gholipour, A. and Hussain, S. (2017), "Motion characteristics of bilayered extensible Timoshenko microbeams", J. Eng. Sci., 112, 1-17. https://doi.org/10.1016/j.ijengsci.2016.09.007.   DOI
2 Gayen, D. and Roy, T. (2013) "Hygro-thermal effects on stress analysis of tapered laminated composite beam", J. Compos. Mater., 3(3), 46-55. https://doi.org/10.5923/j.cmaterials.20130303.02.
3 Ghayesh, M. H., Yourdkhani, M., Balar, S. and Reid, T. (2010), "Vibrations and stability of axially traveling laminated beams", Appl. Math. Comput., 217(2), 545-556. https://doi.org/10.1016/j.amc.2010.05.088.   DOI
4 Ghayesh, M. H., Farokhi, H. and Gholipour, A. (2017), "Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams", J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001.   DOI
5 Ghayesh, M. H. (2018), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Modell., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017.   DOI
6 Gholami, R., Ansari, R. and Gholami, Y. (2017), "Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams", Compos. Struct., 174, 45-58. https://doi.org/10.1016/j.compstruct.2017.04.042.   DOI
7 Joshan, Y.S., Grover, N. and Singh, B.N. (2017), "A new non-polynomial four variable shear deformation theory in axiomatic formulation for hygro-thermo-mechanical analysis of laminated composite plates", Compos. Struct., 182, 685-693. https://doi.org/10.1016/j.compstruct.2017.09.029.   DOI
8 Kazemirad, S., Ghayesh, M. H. and Amabili, M. (2013), "Thermo-mechanical nonlinear dynamics of a buckled axially moving beam", Arch. Appl. Mech., 83(1), 25-42. https://doi.org/10.1007/s00419-012-0630-8.   DOI
9 Pipes, R.B., Vinson, J.R. and Chou, T.W. (1976), "On the hygrothermal response of laminated composite systems," J. Compos. Mater., 10(2), 129-148. https://doi.org/10.1177/002199837601000203.   DOI
10 Li, Z.M. and Qiao, P. (2015), "Thermal postbuckling analysis of anisotropic laminated beams with different boundary conditions resting on two-parameter elastic foundations", Europe. J. Mech. A Solid, 54, 30-43. https://doi.org/10.1016/j.euromechsol.2015.06.001.   DOI
11 Zenkour, A.M., Mashat, D.S. and Alghanmi, R.A. (2014), "Hygrothermal analysis of antisymmetric cross-ply laminates using a refined plate theory", J. Mech. Mater. Des., 10(2), 213-226. https://doi.org/10.1007/s10999-014-9242-5.   DOI
12 Sahu, S.K., Rath, M.K. and Sahoo, R. (2012), "Parametric instability of laminated composite doubly curved shell panels subjected to hygrothermal environment", Adv. Mater. Res., 383, 3212-3216. https://doi.org/10.4028/www.scientific.net/AMR.383-390.3212.   DOI
13 Vinson, J.R. and Sierakowski, R.L. (2002), The Behavior of Structures Composed of Composite Materials, Springer, Germany.
14 Wang, H., Chen, C.S. and Fung, C.P. (2015), "Hygrothermal effects on the vibration and stability of an initially stressed laminated plate", Struct. Eng. Mech., 56(6), 1041-1061. https://doi.org/10.12989/sem.2015.56.6.1041.   DOI
15 Zhan, Q.W., Fan, X.L. and Sun, Q. (2011), "Effects of hygrothermal environment on static properties of laminated composites with a circular open hole", J. Solid Rocket Technol., 34(6), 764-767.   DOI
16 Akbas S.D. (2018c), "Thermal post-buckling analysis of a laminated composite beam", Struct. Eng. Mech., 67(4), 337-346. https://doi.org/10.12989/sem.2018.67.4.337.   DOI
17 Akbas, S.D. (2017a), "Thermal effects on the vibration of functionally graded deep beams with porosity", J. Appl. Mech., 9(05), https://doi.org/10.1142/S1758825117500764.
18 Akbas, S.D. (2017b), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupl. Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.   DOI
19 Akbas S.D. (2018a), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743. https://doi.org/10.12989/scs.2018.26.6.733.   DOI
20 Akbas S.D. (2018b), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. https://doi.org/10.12989/sem.2018.66.1.027.   DOI
21 Akbas S.D. (2018d), "Large deflection analysis of a fiber reinforced composite beam", Steel Compos. Struct., 27(5), 567-576. https://doi.org/10.12989/scs.2018.27.5.567.   DOI
22 Akbas, S.D. (2019a), "Hygrothermal Post-Buckling Analysis of Laminated Composite", J. Appl. Mech., 11(1). https://doi.org/10.1142/S1758825119500091.
23 Akbas, S.D. (2019b), "Post-Buckling Analysis of a Fiber Reinforced Composite Beam with Crack", Eng. Fracture Mech., 212(1), 70-80. https://doi.org/10.1016/j.engfracmech.2019.03.007.   DOI
24 Akbas, S.D. (2019c), "Nonlinear Behavior of Fiber Reinforced Cracked Composite Beams", Steel Compos. Struct., 30(4), 327-336. https://doi.org/10.12989/scs.2019.30.4.327.   DOI
25 Akbas, S.D. (2019d), "Hygro-Thermal Nonlinear Analysis of a Functionally Graded Beam", J. Appl. Comput. Mech., 5(2), 477-485.
26 Biswal, M., Sahu, S. K., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shell-experimental and FEM results", Steel Compos. Struct., 22(6), 1445-1463. http://dx.doi.org/10.12989/scs.2016.22.6.1445.   DOI
27 Ebrahimi, F. and Hosseini, S.H.S. (2018), "Surface effects on nonlinear dynamics of NEMS consisting of double-layered viscoelastic nanoplates", Struct. Eng. Mech., 65(6), 645-656. https://doi.org/10.1140/epjp/i2017-11400-6.   DOI
28 Bouazza, M, Amara, K, Zidour,M, Tounsi ,A, Adda-Bedia, E.A., (2014), "Hygrothermal effects on the postbuckling response of composite beams", Am. J. Mater. Res., 1(2): 35-43.
29 Cardoso, JB., Benedito, N.M. and Valido, A.J. (2009), "Finite element analysis of thin-walled composite laminated beams with geometrically nonlinear behavior including warping deformation", Thin Wall. Struct., 47(11), 1363-1372. https://doi.org/10.1016/j.tws.2009.03.002.   DOI