Browse > Article
http://dx.doi.org/10.12989/sem.2019.70.4.467

Comparative study of the resistance of bonded, riveted and hybrid assemblies; Experimental and numerical analyses  

Ezzine, M.C. (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of Sidi Bel Abbes)
Madani, K. (Laboratoire Mecanique Physique des Materiaux (LMPM), Department of Mechanical Engineering, University of Sidi Bel Abbes)
Tarfaoui, M. (ENSTA Bretagne, MSN/LBMS/DFMS)
Touzain, S. (LaSIE, UMR7356, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, University of La Rochelle)
Mallarino, S. (LaSIE, UMR7356, Laboratoire des Sciences de l'Ingenieur pour l'Environnement, University of La Rochelle)
Publication Information
Structural Engineering and Mechanics / v.70, no.4, 2019 , pp. 467-477 More about this Journal
Abstract
The objective of this work is to analyze by traction tests, the mechanical behavior of an assembly of type metal / metal by various assembly processes; bonding, riveting and hybrid, on the one hand to show the advantage of a hybrid assembly with respect to the other processes, and on the other hand, to analyze by the finite element method the distribution of the stresses in the various components of the structure and to demonstrate the effectiveness of the use of a hybrid assembly with respect to other processes. The number of rivets has been considered. The results show clearly that the value of the different stresses is reduced in the case of a hybrid junction and that the number of rivets in an assembly can be reduced by using a hybrid joint.
Keywords
riveted-bonded joint; Von Mises stress; Absorption Energy; steel E24;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Lopez-Arancibia, A., Altuna-Zugasti, A.M., Aldasoro, H.A. and Pradera-Mallabiabarrena, A. (2015), "Bolted joints for singlelayer structures: Numerical analysis of the bending behavior", Struct. Eng. Mech., 56(3), 355-367. https://doi.org/10.12989/sem.2015.56.3.355.   DOI
2 Matthews, F.L., Kilty, P.F. and Goodwin, E.W. (1982), "A review of the strength of joints in fibre reinforced plastics: Part 2 Adhesively bonded joints", Compos., 13(1), 29-37. https://doi.org/10.1016/0010-4361(82)90168-9.   DOI
3 Mokhtari, M., Madani, K., Belhouari, M., Touzain, S., Feaugas, X. and Ratwani, M. (2013), "Effects of composite adherend properties on stresses in double lap bonded joints", Mater. Design, 44, 633-639. https://doi.org/10.1016/j.matdes.2012.08.001.   DOI
4 Osnes, H. and McGeorge, D. (2009), "Experimental and analytical strength analysis of double lap joints for marine application", Compos. B, 40, 29-40. https://doi.org/10.1016/j.compositesb.2008.07.002.   DOI
5 Oztekin, E. (2015), "Reliabilities of distances describing bolt placement for high strength steel connections", Struct. Eng. Mech., 54(1), https://doi.org/10.12989/sem.2015.54.1.149.   DOI
6 Paroissien, E., Sartor, M., Huet, J. and Lachaud, F. (2007), "Analytical two-dimensional model of a hybrid (bolted-bonded) single-lap joint", J. Aircraft, 44, 573-582. https://doi.org/10.2514/1.24452.   DOI
7 Pirondi, A. and Moroni, F. (2009), "An investigation of fatigue failure prediction of adhesively bonded metal/metal joints", J. Adhes. Sci.Technol., 29(8), 796-805. https://doi.org/10.1016/j.ijadhadh.2009.06.003.   DOI
8 Reid, J.D. and Hiser, N.R. (2005), "Detailed modeling of bolted joints with slippage", Finite Elem. Anal. Des., 41(6), 547-562.   DOI
9 Rezgani, L., Madani, K., Mokhtari, M., Feaugas, X., Cohendoz, S., Touzain, S. and Mallarino, S. (2017), "Hygrothermal ageing effect of ADEKIT A140 adhesive on the J-integral of a plate repaired by composite patch", J. Adhes. Sci. Technol., 32, 1393-1409. https://doi.org/10.1080/01694243.2017.1415790.   DOI
10 Solmaz, M.Y. and Topkaya, T. (2013), "Progressive failure analysis in adhesively, riveted, and hybrid bonded double-lap joints", J Adhes., 89, 822-836. https://doi.org/10.1080/00218464.2013.765800.   DOI
11 Thrall, Jr. and Edward, W. (1977), "Primary adhesively bonded structure technology (PABST)", J. Aircraft, 14(6), 588-594. https://doi.org/10.2514/3.58825.   DOI
12 Thrall, Jr. and Edward, W. (1979), "PABST program test results", Adhes., 22(10), 22-33.
13 Tong, L. (1994), "Bond shear strength for adhesive bonded double-lap joints", Solids Structure, 31, 2919-2931. https://doi.org/10.1016/0020-7683(94)90059-0.   DOI
14 White, M. (2006), "Aluminum & the automotive industry, Jaguar and Land Rover lightweight vehicle strategy", 21st International Aluminium Conference, Moscow, September.
15 Tsai, M.Y. and Morton, J. (1994), "An evaluation of analytical and numerical solutions to the single-lap joint", Solids Struct., 31, 2537.   DOI
16 Vinson, J.R. (1989), "Adhesive bonding of polymer composites". Polym. Eng. Sci., 29(19), 1325-1331. https://doi.org/10.1002/pen.760291904.   DOI
17 Volkersen, O. (1938), "Nietkraftverteilung in Zugbeanspruchten Nietverbindungen mit Konstanten Laschenquerschnitten", Luftfahrtforschung, 15, 41-47.
18 Wooley, G.R. and Carver, D.R. (1971), "Stress concentration factors for bonded lap joints", J. Aircraft, 817. https://doi.org/10.2514/3.44305.   DOI
19 Adams, R.D. (2005), "Adhesive bonding: science", Technol. Appl., Woodhead Publishing Ltd., Bristol, United Kingdom.
20 Abe, Y., Kato, T. and Mori, K. (2009), "Self-piercing riveting of high tensile strength steel and aluminium alloy sheets using conventional rivet and die", J. Mater. Process. Technol., 209(8), 3914-3922. https://doi.org/10.1016/j.jmatprotec.2008.09.007.   DOI
21 Chakhari, J., Daidie, A., Chaib, Z. and Guillot, J. (2008), "Numerical model for two-bolted joints subjected to compressive loading", Finite Elem. Anal. Des, 44(4), 162-173. https://doi.org/10.1016/j.finel.2007.11.010.   DOI
22 Cooper, P.A. and Sawyer, J.W. (1979), "A critical examination of stresses in an elastic single lap joint", TP-1507; NASA.
23 Goland, M. and Reissner, E.J. (1944), "The stress in cemented joints", J. Appl. Mech. Tranc. Am. Soc. Mech. Eng., 66, A17-A27.   DOI
24 D'Aniello, M., Portioli F., Fiorino, L. and Landolfo, R. (2011), "Experimental investigation on shear capacity of riveted connections in steel structures", Eng. Struct., 33(2), 516-531. https://doi.org/10.1016/j.engstruct.2010.11.010.   DOI
25 Da Silva, L.F.M. and Ochsner, A. (2008), Modeling of Adhesive Bonded Joints, Springer, Berlin, Germany.
26 Elhannani, M., Madani, K., Mokhtari, M., Touzain, S., Feaugas, X, and Cohendoz, S. (2016), "A new analytical approach for optimization design of adhesively bonded single-lap joint". Struct. Eng. Mech., 59(2), 313-326. http://doi.org/10.12989/sem.2016.59.2.313.   DOI
27 Goland, M., Buffalo, N.Y. and Reissner, E. (1944), "The stresses in cemented joints: Transaction of ASME", Appl. Mech., 66, A17-A27.
28 Gomez, S., Onoro, J. and Pecharroman, J. (2007), "A simple mechanical model of a structural hybrid adhesive/riveted single lap joint", Adhes. Adhes., 27, 263-267.   DOI
29 Harris, J.A. and Adams, R.D. (1984), "Strength prediction of bonded single lap joints by nonlinear finite element methods", Adhes. Adhes., 4(2), 65. https://doi.org/10.1016/0143-7496(84)90103-9.   DOI
30 Guo, X., Zewei, H., Xiong, Z., Yang, S. and Peng, L. (2016), "Numerical studies on behaviour of bolted ball-cylinder joint under axial force", Steel Compos. Struct., 20(6), https://doi.org/10.12989/scs.2016.20.6.1323.   DOI
31 Leconte, N. and Langrand, B. (2009), "Hybrid displacement FE formulations including a hole", Struct. Eng. Mech., 31(4), 439-451.   DOI
32 Hart-Smith, L.J. (1973), "Adhesive bonded double lap joints", NASA-CR-112237; McDonnell-Douglas Corp., Long Beach, CA, USA.
33 Karachalios, E.F., Adams, R.D. and da Silva, L.F.M. (2013), "Single lap joints loaded in tension with high strength steel adherends", Adhes. Adhes., 43, 81-95. https://doi.org/10.1016/j.ijadhadh.2013.01.016.   DOI
34 Kelly, G. (2006), "Quasi-static strength and fatigue life of hybrid (bonded/bolted) composite single-lap joints", Compos. Struct., 72(1), 119-129. https://doi.org/10.1016/j.compstruct.2004.11.002.   DOI
35 Lees, W.A. (1985), "Stress distribution in bonded joints: An exploration within a mathematical model", Mater. Des., 6(3), 117-123. https://doi.org/10.1016/0261-3069(85)90054-8.   DOI
36 Leitermann, W. and Christlein, J. (2000), "The 2nd generation Audi space frame of the A2: A trendsetting all-aluminium car body concept in a compact class car", Seoul 2000 FISITA World Automotive Congress, Seoul, Korea, June.
37 Levente, K. and Laszlo, D. (2015), "Experimental study on standard and innovative bolted end-plate beam-to-beam joints under bending", Steel Compos. Struct., 18(6), 1423-1450. http://doi.org/10.12989/scs.2015.18.6.1423.   DOI
38 Zhang, Fan., Wang, Hui-Ping, Hicks, C., Yang, Xin, Carlson, B.E and Zhou, Q. (2013), "Experimental study of initial strengths and hygrothermal degradation of adhesive joints between thin aluminum and steel substrates", Adhes. Adhes., 43, 14-25. https://doi.org/10.1016/j.ijadhadh.2013.01.001.   DOI
39 Zhang, F., Wang, H.P., Hicks, C., Yang, X., Carlson, B., Zhou, Q. (2013), "Experimental study of initial strengths and hygrothermal degradation of adhesive joints between thin aluminum and steel substrates", Adhes. Adhes., 43, 14-25.   DOI