Browse > Article
http://dx.doi.org/10.12989/sem.2015.55.1.093

Numerical analysis of crack propagation in cement PMMA: application of SED approach  

Ali, Benouis (Mechanics and Physics of Materials Laboratory, Djillali Liabes University of Sidi Bel-Abbes)
Abdelkader, Boulenouar (Materials and Reactive Systems Laboratory, Mechanical Engineering Department, University of Sidi-Bel-Abbes)
Noureddine, Benseddiq (Mechanics Laboratory of Lille, CNRS UMR 8107, Ecole Polytech'Lille, University of Lille1)
Boualem, Serier (Mechanics and Physics of Materials Laboratory, Djillali Liabes University of Sidi Bel-Abbes)
Publication Information
Structural Engineering and Mechanics / v.55, no.1, 2015 , pp. 93-109 More about this Journal
Abstract
Finite element analysis (FEA) combined with the concepts of linear elastic fracture mechanics (LEFM) provides a practical and convenient means to study the fracture and crack growth of materials. In this paper, a numerical modeling of crack propagation in the cement mantle of the reconstructed acetabulum is presented. This work is based on the implementation of the displacement extrapolation method (DEM) and the strain energy density (SED) theory in a finite element code. At each crack increment length, the kinking angle is evaluated as a function of stress intensity factors (SIFs). In this paper, we analyzed the mechanical behavior of cracks initiated in the cement mantle by evaluating the SIFs. The effect of the defect on the crack propagation path was highlighted.
Keywords
strain energy density; mixed mode; crack propagation; orthopedic cement;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Alshoaibi, A.M. and Ariffin, A.K. (2006), "Finite element simulation of stress intensity factors in elastic-plastic crack growth". J. Zhejiang Univ. Sci. A., 7, 1336-1342.   DOI
2 Alshoaibi, A.M., Hadi, M.S.A. and Ariffin, A.K. (2007), "An adaptive finite element procedure for crack propagation analysis", J. Zhejiang Univ. Sci. A., 2, 228-236.
3 ANSYS Inc. (2009), Programmer's Manual for Mechnical APDL, Release 12.1.
4 Ayatollahi, M.R. and Karo, S. (2012), "Mode I fracture initiation in limestone by strain energy density criterion", Theor. Appl. Fract. Mech., 57, 14-18.   DOI
5 Balasubramanian, V. and Guha, B. (2000), "Fatigue life prediction of welded cruciform joints using strain energy density factor approach", Theor. Appl. Fract. Mech., 34, 85-92.   DOI
6 Balasubramanian, V. and Guha, B. (2000), "Fatigue life prediction of welded cruciform joints using strain", Theor. Appl. Fract. Mech., 31, 85-92
7 Barsoum, R.S. (1974), "On the use of isoparametric finite element in linear fracture mechanics", Int. J. Numer. Meth. Eng., 10, 25-37.
8 Benbarek, S., Bachir Bouiadjra, B., Achour, T., Belhouari, M. and Serier, B. (2007), "Finite element analysis of the behaviour of crack emanating from microvoid in cement of reconstructed acetabulum", Mater. Sci. Eng. A, 457, 385-391.   DOI
9 Benbarek, S., Bachir Bouiadjra, B., Mankour, A., Acour, T. and Serier, B., (2009), "Analysis of fracture behaviour of the cement mantle of reconstructed acetabulum", Comput. Mater. Sci., 44, 1291-1295.   DOI
10 Benbarek, S., Bouiadjra, B.A.B., El Mokhtar, B.M., Achour, T. and Serier, B. (2013), "Numerical analysis of the crack growth path in the cement mantle of the reconstructed acetabulum", Mater. Sci. Eng. C, 33, 543-549.   DOI
11 Berto, F. and Lazzarin, P. (2009), "A review of the volume-based strain energy density approach applied to V-notches and welded structures", Theor. Appl. Fract. Mech., 52, 183-194.   DOI   ScienceOn
12 Berto, F., Lazzarin, P. and Marangon, C. (2012), "Brittle fracture of U-notched graphite plates under mixed mode loading", Mater. Des., 41, 421-432.   DOI   ScienceOn
13 Berto, F. and Lazzarin, P. (2014), "Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches", Mater. Sci. Eng. R, 75, 1-48.   DOI   ScienceOn
14 Bouchard, P.O., Bay, F. and Chastel, Y. (2003), "Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria", Comput. Meth. Appl. Mech. Eng., 192, 3887-3908.   DOI
15 Boulenouar, A., Benseddiq, N. and Mazari, M. (2013), "Strain energy density prediction of crack propagation for 2D linear elastic materials", Theor. Appl. Fract. Mech., 67-68, 29-37.   DOI
16 Boulenouar, A., Benseddiq, N. and Mazari, M. (2013), "Two-dimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis", Eng. Tech. Appl. Sci. Res., 3, 506-510.
17 Boulenouar, A., Benseddiq, N., Mazari, M. and Benamara, N., (2014), "FE model for linear elastic mixed mode loading: estimation of SIFs and crack propagation", J. Theor. Appl. Mech., 52 (2), 373-383.
18 Cervenka, J. (1994), "Discrete crack modeling in concrete structures", PhD Thesis of the University of Colorado.
19 Chang, K.J. (1981), "On the maximum strain criterion - a new approach to the angled crack problem", Eng. Fract. Mech., 14, 107-124.   DOI
20 Chang, K.J. (1981), "Further studies of the maximum stress criterion on the angled crack problem". Eng. Fract. Mech., 14, 125.   DOI
21 Cilingir, A.C. (2010), "Finite element analysis of the contact mechanics of ceramic-on-ceramic hip resurfacing prostheses", J. Bio. Eng., 7(3), 244-253.   DOI
22 Colombi, P. (2002), "Fatigue analysis of cemented hip prosthesis: damage accumulation scenario and sensitivity analysis", Int. J. Fatigue, 24(7), 739-746.   DOI
23 Dalstra, M. and Huiskes, R. (1995), "Load transfer across the pelvic bone", J. Biomech., 28(6), 715-724.   DOI
24 Deb, S. (2008), Orthopaedic Bone Cements, Woodhead Publishing in Materials, First Publishing.
25 Dooblare, M. and Garcia, J.M., (2002), "Anisotropic bone remodelling model based on a continuum damage-repair theory", J. Biomech., 35(1), 1-17.   DOI
26 Dyrkacz, R.M.R., Brandt, J.M., Morrison, J., O'Brien, S.T., Ojo, O.A., Turgeon, T.R. and Wyss, U.P. (2015), "Finite element analysis of the head-neck taper interface of modular hip prostheses", Tribology International. (in Press)
27 Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plates under plane loading and transverse shear", J. Basic Eng., 85, 519-527.   DOI
28 Harigan, T.P. and Harris, W.H. (1991), "A finite element study of the effect of diametral interface gaps on the contact areas and pressures in uncemented cylindrical femoral total hip components", J. Biomech., 24, 87-91.   DOI
29 Jeffers, J.R., Browne, M., Lennon, A.B., Prendergast, P.J. and Taylor, M. (2007), "Cement mantle fatigue failure in total hip replacement: experimental and computational testing", J. Biomech., 40, 1525-1533.   DOI
30 Jayatilaka, A.D.S., Jenkins, I. and Prasad, S.V. (1977), "Determination of crack growth in a mixed mode loading system, Analysis and Mechanics", ICF4, Waterloo, Canada.
31 Kim, B.S., Moon, B.Y., Mann, K.A., Kim, H.S. and Boo, K.S. (2008), "Simulated crack propagation in cemented total hip replacements", Mater. Sci. Eng. A, 483-484, 306-308.   DOI
32 Kipp, M.E. and Sih, G.C. (1975), "The strain energy density failure criterion applied to notched elastic solids", Int. J. Solid. Struct., 11, 153-173.   DOI
33 Labeas, G. and Kermanidis, Th. (2006), "Stress multiaxiality factor for crack growth prediction using the strain energy density theory", Theor. Appl. Fract. Mech., 45, 100-107.   DOI
34 Lazzarin, P., Berto, F. and Ayatollahin, M.R. (2013), "Brittle failure of inclined key-hole notches in isostatic graphite under in-plane mixed mode loading", Fatigue Fract. Eng. Mater. Struct., 36, 942-955.   DOI   ScienceOn
35 Lennon, A.B., McCormack, B.A.O. and Prendergast, P.J. (2003), "The relationship between cement fatigue damage and implant surface finish in proximal femoral prostheses", Med. Eng. Phys., 25, 833-841.   DOI
36 Lennon, A.B. and Pendegast, P.J. (2001), "Evaluation of cement stresses in finite element analyses of cemented orthopaedic implants", J. Biomech. Eng., 123(6), 623- 628.   DOI
37 Leroy, R. (1991), "Etude et comportement non-uniforme de linterface entre implant Femorale et liant polymerique dans le cas de prothese totale de hanche", These de doctorat, Universite de Tours.
38 Nobile, L., Carloni, C. and Nobile, M. (2004), "Strain energy density prediction of crack initiation and direction in cracked T-beams and pipes", Theor. Appl. Fract. Mech., 41, 137-145.   DOI
39 Maiti, S.K. and Smith, R.A. (1983), "Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field", Int. J. Fracture, 23, 281-295.   DOI
40 Murphy, B.P. and Prendergast, P.J. (2001), "The relationship between stress, porosity and nonlinear damage accumulation in acrylic bone cement", J. Biomed. Mater. Res., 59, 646-654.
41 Nocollela, P.N., Thacker, B.H., Katoozian, H. and Davy, D.T. (2001), Bioengineerion Conference, BED 50, 427-428.
42 Kayabasi, O. and Ekici, B. (2008), "Probabilistic design of a newly designed cemented hip prosthesis using finite element method", Mater. Des., 29(5), 963-971.   DOI
43 Pan, B.F., Gao, Y.Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement", Struct. Eng. Mech., 52(4), 829-841.   DOI
44 Perez, M.A., Garcia-Aznar, J.M., Doblare, M., Seral, B. and Seral, F., (2006), "A comparative FEA of the deboning process in different concepts of cemented hip implants", Medi. Eng. Phys., 28, 525-533.   DOI
45 Ridha, H. (2014), "3D finite element simulation of human proximal femoral fracture under quasi-static load", Adv. Biomech. Appl., 1(1), 1-14.   DOI
46 Sih, G.C. (1973), "Some basic problems in fracture mechanics and new concepts", Eng. Fract. Mech., 5, 365-377.   DOI
47 Sih, G.C. (1974), "Strain-energy-density factor applied to mixed-mode crack problems", Int. J. Fract., 10, 305-321.   DOI
48 Souiyah, M., Alshoaibi, A.M., Muchtar, A. and Ariffin, A.K. (2008), "Finite element model for linear-elastic mixed mode loading using adaptive mesh strategy", J. Zhejiang Univ. Sci. A., 9, 32-37.   DOI
49 Sih, G.C. and Macdonald, B. (1974), "Fracture mechanics applied to engineering problems-Strain energy density fracture criterion", Eng. Fract. Mech., 6, 361-386.   DOI
50 Sim, E., Freimuller, W. and Reiter, T.J. (1995), "Finite element analysis of the stress distributions in the proximal end of the femur after stabilization of a pertrochanteric model fracture: a comparison of two implant", Injury, 26, 445-449.   DOI
51 Spyropoulos, C.P. (2003), "Crack initiation direction from interface of bonded dissimilar media", Theor. Appl. Fract. Mech., 39, 99-105.   DOI
52 Theocaris, P.S. (1984), "A higher-order approximation for the T-criterion of fracture in biaxial fields", Eng. Fract. Mech., 19, 975.   DOI
53 Tong, J. and Wong, K.Y. (2005), Mixed Mode Fracture in Reconstructed Acetabulum, Department of Mechanical and design Engineering, University of Portsmouth, Anglesea Road, Portsmouth, PO1 3 DJ, UK.
54 Weinas, H., Huiskes, R., Van ribergen, B., Summer, D.R., Turner, T.M. and Galante, J.O. (1993), "Adaptive bone-remodeling around bonded noncemented THA: a comparison between animal experiments and computer simulatio", J. Orthopaed. Res., 11, 500-513.   DOI
55 Wu, H.C. (1974), "Dual failure criterion for plane concrete", J. Eng. Mech. Div., ASCE, 100, 1167-1181.
56 Zuo, J.Z. Kermanidis, A.T. and Pantelakis, S.G. (2002), "Strain energy density prediction of fatigue crack growth from hole of aging aircraft structures", Theor. Appl. Fract. Mech., 38, 37-51.   DOI
57 Ali, B., Boualem, S. and Smail, B. (2015), "Influence of porosity on the behavior of cement orthopaedic of total hip prosthesis", Adv. Biomech. Appl., 2(1), 1-10.   DOI