Browse > Article
http://dx.doi.org/10.12989/sem.2013.48.4.501

Exploring and calibrating local curvature effect of cortical bone for quantitative ultrasound (QUS)  

Chen, Jiangang (The Department of Mechanical Engineering, The Hong Kong Polytechnic University)
Su, Zhongqing (The Department of Mechanical Engineering, The Hong Kong Polytechnic University)
Cheng, Li (The Department of Mechanical Engineering, The Hong Kong Polytechnic University)
Ta, De-An (The Department of Electronic Engineering, Fudan University)
Publication Information
Structural Engineering and Mechanics / v.48, no.4, 2013 , pp. 501-518 More about this Journal
Abstract
Apart from thinning of cortical layers, the local bone curvature, varying along bone periphery, modulates ultrasound waves as well, which is however often underestimated or overlooked in clinical quantitative ultrasound (QUS). A dedicated three-dimensional finite element modelling technique for cortical bones was established, for quantitatively exploring and calibrating the effect of local curvature of cortical bone on ultrasound. Using a correlation-based mode extraction technique, high-velocity group (HVG) and low-velocity group (LVG) wave modes in a human radius were examined. Experimental verification using acrylic cylinders and in vitro testing using a porcine femur were accomplished. Results coherently unravelled the cortical curvature exerts evident influence on bone-guided ultrasound when RoC/${\lambda}$ <1 for HVG mode and RoC/${\lambda}$ <2 for LVG mode (RoC/${\lambda}$: the ratio of local bone curvature radius to wavelength); the sensitivity of LVG mode to bone curvature is higher than HVG mode. It has also been demonstrated the local group velocity of an HVG or LVG mode at a particular skeletal site is equivalent to the velocity when propagating in a uniform cylinder having an outer radius identical to the radius of curvature at that site. This study provides a rule of thumb to compensate for the effect of bone curvature in QUS.
Keywords
local bone curvature; cortical bone; bone modelling; quantitative ultrasound (QUS); high-velocity group wave; low-velocity group wave; in vitro testing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alleyne, D.N., Pavlakovic, B., Lowe, M.J.S. and Cawley, P. (2001), "Rapid long-range inspection of chemical plant pipework using guided waves", Rev. Prog. Quant. Nondestr. Eval., 20, 180-187.
2 Bossy, E., Talmant, M., Defontaine, M., Patat, F. and Laugier, P. (2004), "Bidirectional axial transmission can improve accuracy and precision of ultrasonic velocity measurement in cortical bone: a validation on test materials", IEEE Trans. Ultrason. Ferroelectr. Freq. Contral, 51(1), 71-79.   DOI   ScienceOn
3 Bossy, E., Talmant, M. and Laugier, P. (2002), "Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2D simulation study", J. Acoust. Soc. Am., 112(1), 297-307.   DOI   ScienceOn
4 Cau, F., Fanni, A., Montisci, A., Testoni, P. and Usai, M. (2006), "A signal-processing tool for nondestructive testing of inaccessible pipes", Eng. Appl. Artif. Intel., 19(7), 753-760.   DOI   ScienceOn
5 Cawley, P., Lowe, M.J.S., Alleyne, D.N., Pavlakovic, B. and Wilcox, P. (2003), "Practical long range guided wave testing: applications to pipes and rail", Mater. Eval., 61(1), 66-74.
6 Cheeke, J.D.N., Li, X. and Wang, Z. (1998), "Observation of flexural Lamb waves (A0 mode) on waterfilled cylindrical shells", J. Acoust. Soc. Am., 104(6), 3678-3680.   DOI   ScienceOn
7 Chen, J., Cheng, L., Su, Z. and Qin, L. (2013a), "Modeling elastic waves in coupled media: estimate of soft tissue influence and application to quantitative ultrasound", Ultrasonics, 53(2), 350-362.   DOI   ScienceOn
8 Chen, J. and Su, Z. (2013b), "On ultrasound waves in bones with coupled soft tissues: a mechanism study and in vitro calibration", Ultrasonics. (in press)
9 Chen, J., Su, Z. and Cheng, L. (2010a), "Identification of corrosion damage in submerged structures using anti-symmetric Lamb wave mode", Proceedings of the 5th European Workshop on Structural Health Monitoring, Naples, Italy, Jul.
10 Chen, J., Su, Z. and Cheng, L. (2012b), "The medium coupling effect on propagation of guided waves in engineering structures and human bone phantoms", Coupled Systems Mechanics, 1(4), 297-309.   DOI   ScienceOn
11 Chen, J., Su, Z., Cheng, L. and Qin, L. (2010b), "Influence of soft tissues on ultrasonic Lamb waves in synthesised soft tissue-bone phantoms", IFMBE Proceedings, 31(6), 1315-1318.   DOI
12 Dong, X.N. and Guo, X.E. (2004), "The dependence of transversely isotropic elasticity of human femoral cortical bone on porosity", J. Biomech., 37(8), 1281-1287.   DOI   ScienceOn
13 Laugier, P. and Haiat , G. (2011), Bone Quantitative Ultrasound, Springer, New York.
14 Nicholson, P.H.F., Moilanen, P., Karkkainen, T., Timonen, J. and Cheng, S. (2002), "Guided ultrasonic waves in long bones: Modelling, experiment and in vivo application", Physiol. Meas., 23(4), 755-768.   DOI   ScienceOn
15 Moilanen, P., Nicholson, P.H.F., Kilappa, V., Cheng, S.L. and Timonen, J. (2007a), "Assessment of the cortical bone thickness using ultrasonic guided waves: Modelling and in vitro study", Ultrasound. Med. Biol., 33(2), 254-262.   DOI   ScienceOn
16 Moilanen, P., Talmant, M., Nicholson, P.H.F., Cheng, S.L., Timonen, J. and Laugier, P. (2007b), "Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments", J. Acoust. Soc. Am., 122(4), 2439-2445.   DOI   ScienceOn
17 Muller, M., Moilanen, P., Bossy, E., Nicholson, P., Kilappa, V., Timonen, J., Talmant, M., Cheng, S. and Laugier, P. (2005), "Comparison of three ultrasonic axial transmission methods for bone assessment", Ultrasound. Med. Biol., 31(5), 633-642.   DOI   ScienceOn
18 Palmeri, M.L., Sharma, A.C., Bouchard, R.R., Nightingale, R.W. and Nightingale, K.R. (2005), "A finiteelement method model of soft tissue response to impulsive acoustic radiation force", IEEE Trans. Ultrason. Ferroelectr. Freq. Contral, 52(10), 1699-1712.   DOI   ScienceOn
19 Rose, J.L. (1999), Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge, MA.
20 Sasso, M., Talmant, M., Haiat, G., Laugier, P. and Naili, S. (2006), "Development of a multi-dimensional SVD based technique for multi-receivers ultrasound used in bone status characterization", Fourth IEEE Workshop on Sensor Array and Multichannel Processing.
21 Shi, L.H. and Ihn, J.B. (2001), "Identification of time-domain refletometry measurement results by wavelet modeling", The 3rd International Workshoip on Strucctural Health Monitoring, Stanford.
22 Zhao, X., Gao, H., Zhang, G., Ayhan, B., Yan, F., Kwan, C. and Rose, J.L. (2007), "Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring", Smart Mater. Struct., 16(4), 1208-1217.   DOI   ScienceOn
23 Wang, Q. and Yuan, S. (2009), "Wave rebuilding method for the active Lamb wave based structural damage imaging", Chinese Journal of Astronautics, 30(3), 5.
24 Xu, K.L., Ta, D.A. and Wang, W.Q. (2010), "Multiridge-based analysis for separating individual modes from multimodal guided wave signals in long bones", IEEE Trans. Ultrason. Ferroelectr. Freq. Contral, 57(11), 2480-2490.   DOI   ScienceOn
25 Yu, L., Cheng, L. and Su, Z. (2011), "Correlative sensor array and its applications to identification of damage in plate-like structures", Structural Control and Health Monitoring, 19(8), 650-671.
26 Leonard, K.R. and Hinders, M.K. (2003), "Guided wave helical ultrasonic tomography of pipes", J. Acoust. Soc. Am., 114(2), 767-774.   DOI   ScienceOn
27 Le, L.H., Gu, Y.J., Li, Y.P. and Zhang, C. (2010), "Probing long bones with ultrasonic body waves", Appl. Phys. Lett., 96(11), 114102.   DOI   ScienceOn
28 Lee, K.I. and Yoon, S.W. (2004), "Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia", J. Acoust. Soc. Am., 115(6), 3210-3217.   DOI   ScienceOn
29 Lefebvre, F., Deblock, Y., Campistron, P., Ahite, D. and Fabre, J.J. (2002), "Development of a new ultrasonic technique for bone and biomaterials in vitro characterization", J. Biomed. Mater. Res., 63(4), 441-446.   DOI   ScienceOn
30 Li, F.C., Su, Z.Q., Ye, L. and Meng, G. (2006), "A correlation filtering-based matching pursuit (CF-MP) for damage identification using Lamb waves", Smart Mater. Struct., 15(6), 1585-1594.   DOI   ScienceOn
31 Li, J. and Rose, J.L. (2006), "Natural beam focusing of non-axisymmetric guided waves in large-diameter pipes", Ultrasonics, 44(1), 35-45.   DOI   ScienceOn
32 Lowe, M.J.S., Alleyne, D.N. and Cawley, P. (1998), "Defect detection in pipes using guided waves", Ultrasonics, 36(1-5), 147-154.   DOI   ScienceOn
33 Minonzio, J.G., Foiret, J., Talmant, M. and Laugier, P. (2011), "Impact of attenuation on guided mode wavenumber measurement in axial transmission on bone mimicking plates", J. Acoust. Soc. Am., 130(6), 3574-3582.   DOI   ScienceOn
34 Minonzio, J.G., Talmant, M. and Laugier, P. (2010), "Guided wave phase velocity measurement using multiemitter and multi-receiver arrays in the axial transmission configuration", J. Acoust. Soc. Am., 127(5), 2913-2919.   DOI   ScienceOn
35 Moilanen, P., Nicholson, P.H.F., Kilappa, V., Cheng, S. and Timonen, J. (2006), "Measuring guided waves in long bones: Modeling and experiments in free and immersed plates", Ultrasound. Med. Biol., 32(5), 709-719.   DOI   ScienceOn
36 Ta, D.A., Huang, K., Wang, W.Q., Wang, Y.Y. and Le, L.H. (2006), "Identification and analysis of multimode guided waves in tibia cortical bone", Ultrasonics, 44(1), e279-e284.   DOI   ScienceOn
37 Song, X., Ta, D. and Wang, W. (2011), "Analysis of superimposed ultrasonic guided waves in long bones by the joint approximate diagonalization of eigen-matrices algorithm", Ultrasound. Med. Biol., 37(10), 1704-1713.   DOI   ScienceOn
38 Su, Z., Yang, C., Pan, N., Ye, L. and Zhou, L.-M. (2007), "Assessment of delamination in composite beams using shear horizontal (SH) wave mode", Compos. Sci. Technol., 67(2), 244-251.   DOI   ScienceOn
39 Su, Z. and Ye, L. (2005), "A fast damage locating approach using digital damage fingerprints extracted from Lamb wave signals", Smart Mater. Struct., 14(5), 1047.   DOI   ScienceOn
40 Ta, D.A., Wang, W.Q., Wang, Y.Y., Le, L.H. and Zhou, Y.Q. (2009), "Measurement of the dispersion and attenuation of cylindrical ultrasonic guided waves in long bone", Ultrasound. Med. Biol., 35(4), 641-652.   DOI   ScienceOn
41 Talmant, M., Su, Z., Cheng, L. and Laugier, P. (2012a), "Measurement of guided mode wavenumbers in soft tissue-bone mimicking phantoms using ultrasonic axial transmission", Phys. Med. Biol., 57(10), 3025-3037.   DOI   ScienceOn
42 Tatarinov, A., Sarvazyan, N. and Sarvazyan, A. (2005), "Use of multiple acoustic wave modes for assessment of long bones: Model study", Ultrasonics, 43(8), 672-680.   DOI   ScienceOn
43 Tua, P.S., Quek, S.T. and Wang, Q. (2005), "Detection of cracks in cylindrical pipes and plates using piezoactuated Lamb waves", Smart Mater. Struct., 14(6), 1325-1342.   DOI   ScienceOn
44 Velichko, A. and Wilcox, P.D. (2009), "Excitation and scattering of guided waves: relationships between solutions for plates and pipes", J. Acoust. Soc. Am., 125(6), 3623-3631.   DOI   ScienceOn