Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.2.105

Single Crystalline InxGa1-xAs Nanowires on Si (111) via VLS Method  

Shin, Hyun Wook (Department of Applied Physics, Kyung Hee University)
Shin, Jae Cheol (Photonic-Energy Center, Korea Photonics Technology Institute)
Choe, Jeong-Woo (Department of Applied Physics, Kyung Hee University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.2, 2013 , pp. 105-110 More about this Journal
Abstract
Single crystalline $In_xGa_{1-x}As$ nanowires are grown on Si (111) substrate via Vapor-Liquid-Solid growth mode using metal-organic chemical vapor deposition. The ternary nanowires have been grown with various growth conditions and examined by electron microscopy. The alloy compositions of the nanowires has been investigated using Energy-dispersive X-ray spectroscopy. We have found that the composition gradient of the nanowire becomes larger with growth temperature and V/III ratio.
Keywords
Nanowire; MOCVD; $In_xGa_{1-x}As$; Vapor-Liquid-Solid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. Krylyuk, A. V. Davydov, and I. Levin, ACS Nano, 5, 656 (2012).
2 H. Sakaguchi, T. Mishima, T. Meguro, and Y. Fujiwara, J. Phys. Conf. Ser. 165, 012024 (2009).   DOI   ScienceOn
3 H. Naoi, D. M. Shaw, G. J. Collins, and S. Sakai, J. Cryst. Growth 219, 481 (2000).   DOI   ScienceOn
4 C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, Nature Nano. 3, 31 (2008).   DOI   ScienceOn
5 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).   DOI   ScienceOn
6 E. Garnett and P. Yang, Nano Lett. 10, 1082 (2010).   DOI   ScienceOn
7 B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, Nature 449, 885 (2007).   DOI   ScienceOn
8 S. K. Lim, M. J. Tambe, M. M. Brewster, and S. Gradecak, Nano Lett. 8, 1386 (2008).   DOI   ScienceOn
9 K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, and T. Fukui, Nano Lett. 10, 1639 (2010).   DOI   ScienceOn
10 K. Tomioka, M. Yoshimura, and T. Fukui, Nature 488, 189 (2012).   DOI   ScienceOn
11 K. H. Kim, J. H. Shim, and I. H. Bae, J. Vac. Sci. Technol. 18, 208 (2009).
12 S. J. Lee, S. K. Noh, S. H. Bae, and H. Jung, J. Vac. Sci. Technol. 20, 22 (2011).
13 J. N. Shapiro, A. Lin, P. S. Wong, A. C. Scofield, C. Tu, P. N. Senanayake, G. Mariani, B. L. Liang, and D. L. Huffaker, Appl. Phys. Lett. 97, 243102 (2010).   DOI   ScienceOn
14 F. Glas, Phys. Rev. B 74, 121302 (2006).   DOI   ScienceOn
15 R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89-90 (1964).   DOI
16 Y. Kim, H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, M. Paladugu, J. Zou, and A. A. Suvorova, Nano Lett. 6, 599 (2006).   DOI   ScienceOn
17 F. Jabeen, S. Rubini, and F. Martelli, Microelectronics Journal 40, 442 (2009).   DOI   ScienceOn