Browse > Article
http://dx.doi.org/10.5757/JKVS.2012.21.3.121

Effect of RF Bias on Electron Energy Distributions and Plasma Parameters in Inductively Coupled Plasma  

Lee, Hyo-Chang (Department of Electrical Engineering, Hanyang University)
Chung, Chin-Wook (Department of Electrical Engineering, Hanyang University)
Publication Information
Journal of the Korean Vacuum Society / v.21, no.3, 2012 , pp. 121-129 More about this Journal
Abstract
RF biased inductively coupled plasma (ICP) is widely used in semiconductor and display etch processes which are based on vacuum science. Up to now, researches on how rf-bias power affects have been focused on the controls of dc self-bias voltages. But, effect of RF bias on plasma parameters which give a crucial role in the processing result and device performance has been little studied. In this work, we studied the correlation between the RF bias and plasma parameters and the recent published results were included in this paper. Plasma density was changed with the RF bias power and this variation can be explained by simple global model. As the RF bias was applied to the ICP, increase in the electron temperature from the electron energy distribution was measured indicating electron heating. Plasma density uniformity was enhanced with the RF bias power. This study can be helpful for the control of the optimum discharge condition, as well as the basic understanding for correlation between the RF bias and plasma parameters.
Keywords
Inductively coupled plasma; RF bias; Electron energy distribution; Plasma density; Electron temperature; Plasma uniformity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. J. You, S. S. Kim, J. H. Kim, D. J. Seong, Y. H. Shin, and H. Y. Chang, Appl. Phys. Lett. 91, 221501 (2007).   DOI
2 V. A. Godyak, R. B. Piejak, and B. M. Alexandrovich, Plasma Sources Sci. Technol. 1, 36 (1992).   DOI   ScienceOn
3 M. A. Lieberman and A. J. Lichtenberg, Principle of Plasma Discharges and Materials Processing, 2nd ed. (Wiley, New York, 2004).
4 F. F. Chen and J. P. Chang, Lecture Notes on Principles of Plasma Processing (Kluwer/Plenum, New York, 2002).
5 M. H. Lee, S. H. Jang, and C. W. Chung, J. Appl. Phys. 101, 033305 (2007).   DOI   ScienceOn
6 V. A. Godyak and R. B. Piejak, Phys. Rev. Lett. 65, 996 (1990).   DOI   ScienceOn
7 H. C. Lee, M. H. Lee, and C. W. Chung, Appl. Phys. Lett. 96, 041503 (2010).   DOI
8 H. C. Lee and C. W. Chung, Collisionless Electron Heating by rf Bias in Inductively Coupled Plasma (submitted).
9 H. C. Lee, J. Y. Bang, and C. W. Chung, Thin. Solid Films 519, 7009 (2011).   DOI
10 H. C. Lee, S. J. Oh, and C. W. Chung, Plasma Sources Sci. Technol. 21, 035003 (2012).   DOI
11 P. J. Chabert, Phys. D, Appl. Phys. 40 R63 (2007).   DOI
12 T. Mussenbrock, T. Hemke, D. Ziegler, R. P. Brinkmann, and M. Klick, Plasma Sources Sci. Technol. 17 025018 (2008).   DOI
13 J. H. Keller, J. C. Forster, and M. S. Barnes, J. Vac. Sci. Technol. A 11, 2487 (1993).
14 공정 플라즈마 기초와 응용, Alfred Grill 원저, 정진욱 옮김, 청문각 (2003).
15 플라즈마 식각기술, 염근영, 미래컴, (2006).
16 J. W. Coburn and H. F. Winters, J. Appl. Phys. 50, 3189 (1979).   DOI   ScienceOn
17 G. A. Hebner and P. A. Miller, J. Appl. Phys. 87, 7660 (2000).   DOI
18 D. S. Wuu, C. R. Chung, Y. H. Liu, R. H. Horng, and S. H. Huang, J. Vac. Sci. Technol. B 20, 902 (2002).   DOI
19 N. O. V. Plank, M. A. Blauw, E. W. J. M. van der Drift, and R. Cheung, J. Phys. D 36, 482 (2003).   DOI
20 S. I. Imai, J. Vac. Sci. Technol. B 26, 2008 (2008).   DOI
21 M. C. Chiang, F. M. Pan, H. C. Cheng, J. S. Liu, S. H. Chan, and T. C. Wei, J. Vac. Sci. Technol. A 18, 181 (2000).
22 S. J. Pearton, C. R. Abernathy, and F. Ren, Appl. Phys. Lett. 64, 2294 (1994).   DOI
23 M. A. Sobolewski and J. H. Kim, J. Appl. Phys. 102, 113302 (2007).   DOI
24 H. C. Lee, M. H. Lee, and C. W. Chung, Appl. Phys. Lett. 96, 071501 (2010).   DOI
25 S. Samukawa, Jpn. J. Appl. Phys. 33, 2133 (1994).   DOI