Browse > Article
http://dx.doi.org/10.5757/JKVS.2012.21.2.93

Synthesis and Luminescent Properties of Sm3+-doped GdVO4 Phosphors  

Cho, Shin-Ho (Department of Materials Science and Engineering, Silla University)
Cho, Seon-Woog (Department of Materials Science and Engineering, Silla University)
Publication Information
Journal of the Korean Vacuum Society / v.21, no.2, 2012 , pp. 93-98 More about this Journal
Abstract
$Gd_{1-x}VO_4:{Eu_x}^{3+}$ phosphor powders were synthesized with changing the concentration of $Sm^{3+}$ ion by using a solid-state reaction method. The crystal structures of all the phosphors were found to be a tetragonal system, composed of (200) diffraction peak centered at $24.76^{\circ}$, and the morphology of grains approached the spherical form with homeogenous size distribution when the concentration of $Sm^{3+}$ ion was 0.05 mol. As for the photoluminescence properties, all of the phosphor powders, irrespective of $Sm^{3+}$ ion concentration, indicated the yellow, orange, and red emission peaked at 565, 603, and 645 nm respectively. As the concentration of $Sm^{3+}$ ion increases, the intensity of excitation spectrum showed a decreasing tendency on the increase of Sm3+ ion concentration. The maximum excitation and emission spectra were observed and the symmetry ratio was 1.19 at 0.05 mol of $Sm^{3+}$ ion.
Keywords
Phosphor; $GdVO_4$:Sm; Solid-state reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. S. Jo, Y. Y. Luo, K. Senthil, T. Masaki, and D. H Yoon, Opt. Mater. 33, 1190 (2011).   DOI   ScienceOn
2 S. Cho, J. Korean Vacuum Soc. 20, 176 (2011).   DOI
3 R. S. Yadav, R. K. Dutta, M. Kumar, and A. C. Pandey, J. Lumin. 129, 1078 (2009).
4 A. H. Krumpel, E. Kolk, E. Cavalli, P. Boutinaud, M. Bettinelli, and P. Dorenbos, J. Phys.: Condens. Matter 21, 115503 (2009).   DOI   ScienceOn
5 S. Bar, H. Scheife, and G. Huber, Opt. Mater. 28, 681 (2006).   DOI   ScienceOn
6 X. Su, B. Yan, and H. Huang, J. Alloys Compd. 399, 251 (2005).   DOI
7 T. Minami, T. Miyata, Y. Suzuki, and Y. Mochizuki, Thin Solid Films 65, 469-470 (2004).
8 X. Hu, J. Chen, N. Zhuang, J. Chen, J. Lan, and F. Yang, J. Cryst. Growth 256, 328 (2003).   DOI
9 Y. Zhou, J. Lin, and S. Wang, J. Solid State Chem. 171, 391 (2003).   DOI   ScienceOn
10 V. R. Bandi, B. K. Grandhe, M. Jayasimhadri, K. Jang, H. S. Lee, S. S. Yi, and J. H. Jeong, J. Cryst. Growth 326, 120 (2011).   DOI   ScienceOn
11 Y. Chen, H. K. Yang, J. W. Chung, B. K. Moon, H. Choi, and J. H. Jeong, J. Korean Phys. Soc. 57, 1760 (2010).   DOI   ScienceOn
12 T. P. Tang, C. M. Lee, and F. C. Yen, Ceram. Int. 32, 665 (2006).   DOI   ScienceOn
13 G. S. R. Raju, J. S. Yu, J. Y. Park, H. C. Jung, and B. K. Moon, J. Am. Ceram. Soc. 95, 238 (2012).   DOI   ScienceOn
14 B. S. Tsai, Y. H. Chang, and Y. C. Chen, Electrochem. Solid-State Lett. 8, H55 (2005).