Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.3.225

Investigation on the Electrical Characteristics of mc-Si Wafer and Solar Cell with a Textured Surface by RIE  

Park, Kwang-Mook (KyungPook National University)
Jung, Jee-Hee (MillinetSolar Co. Ltd.)
Bae, So-Ik (MillinetSolar Co. Ltd.)
Choi, Si-Young (KyungPook National University)
Lee, Myoung-Bok (Nano Convergence Practical Application Center)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.3, 2011 , pp. 225-232 More about this Journal
Abstract
Reactive ion etching (RIE) technique for maskless surface texturing of mc-silicon solar wafers has been applied and succeed in fabricating a grass-like black-silicon with an average reflectance of $4{\pm}1%$ in a wavelength range of 300~1,200 nm. In order to investigate the optimized texturing conditions for mass production of high quantum efficiency solar cell Surface characteristics such as the spatial distribution of average reflectance, micrscopic surface morphology and minority carrier lifetime were monitored for samples from saw-damaged $15.6{\times}15.6\;cm^2$ bare wafer to key-processed wafers as well as the mc-Si solar cells. We observed that RIE textured wafers reveal lower average reflectance along from center to edges by 1% and referred the origin to the non-uniform surface structures with a depth of 2 times deeper and half-maximum width of 3 times. Samples with anti-reflection coating after forming emitter layer also revealed longer minority carrier lifetime by 40% for the edge compared to wafer center due to size effects. As results, mc-Si solar cells with RIE-textured surface also revealed higher efficiency by 2% and better external quantum efficiency by 15% for edge positions with higher height.
Keywords
mc-Si solar cell; Reactive ion etching; Texturing; Saw damage; Minority carrier lifetime;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. S. Yun, D. H. Hyun, B. J. Jin, J. Y. Choi, J.S. Kim, H. D. Kang, J. Yi, and G. C. Kwon, J. Korean Vacuum Soc. 19, 114 (2010).   DOI
2 I. G. Park, M. S. Yun, D. H. Hyun, B .J. Jin, J.Y. Choi, J. S. Kim, H. D. Kang, and G. C. Kwon,J. Korean Vacuum Soc. 19, 314 (2010).   DOI
3 G. H. Kennedy, Vacuum Technology (Prentice-Hall, New York, 2005) pp. 88-105.
4 Y. Inomata, K. Fukui, and K. Shirasawa, Sol. Energy Mater. Sol. Cells 48, 237 (1997).   DOI   ScienceOn
5 K. S Lee, M. H. Ha, J. H. Kim, and J. W. Jeong,Sol. Energy Mater. Sol. Cells 95, 66 (2011).   DOI
6 G. Kumaravelu, M. M. Alkaisi, D. Macdonald, J.Zdao, B. Rong, and A. Bittar, Sol. Energy Mater. Sol. Cells 87, 99 (2005).   DOI
7 E. J. Teo, M. Alkaisi, A. A. Bettiol, T. Osipowicz,J. V. Kan, F. Watt, and A. Markwitz, Nucl. Instrum. Meth. in Phys. Res. B 190, 339 (2002).   DOI
8 M. Gloeckler, DEVICE PHYSICS of Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS, Ph.D DISSCERTATION, Colorado State University, June, 2005.
9 Saleem H. Zaidi, SAND2000-0919, Sandia contact #BE-8229, April 2000.
10 S. Narayanan, Sol. Energy Mater. Sol. Cells 74,107 (2002).   DOI   ScienceOn
11 H. F. W. Dekkers, F. Duerinckx, J. Szlufcik, andJ. Nijs, Opto-electron. rev. 8, 311 (2000).
12 A. Goetzberger, C. Hebling, and H. W. Schock, Mater. Sci. Eng. R 40, 1 (2003).   DOI
13 이재형, 임동건, 이준신, 태양전지 원론, (홍릉과학출판사, 서울, 2005) pp. 281-285, pp. 358-365.
14 J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. H.Kim, S. K. Dhungel, D. Mangalaraj, and J. S. Yi,Sol. Energy Mater. Sol. Cells 90, 3085 (2006).   DOI   ScienceOn
15 G. Kumaravelu, M. M. Alkaisi, A. Bittar, D. Macdonald,and J. Zhao, Curr. Appl. phys. 4, 108 (2004).   과학기술학회마을   DOI