Browse > Article
http://dx.doi.org/10.5757/JKVS.2009.18.2.102

Optical Emission Spectra of Oxygen Plasma Produced by Radio-Frequency Plasma  

Kim, Do-Yeob (School of Nano System Engineering, Inje University)
Kim, Min-Su (School of Nano System Engineering, Inje University)
Kim, Tae-Hoon (School of Nano System Engineering, Inje University)
Kim, Ghun-Sik (School of Nano System Engineering, Inje University)
Choi, Hyun-Young (School of Nano System Engineering, Inje University)
Cho, Min-Young (School of Nano System Engineering, Inje University)
Jeon, Su-Min (School of Nano System Engineering, Inje University)
Park, Sung-Dong (ALPHAPLUS Co., Ltd.)
Kim, Jin-Ha (ALPHAPLUS Co., Ltd.)
Kim, Eun-Do (ALPHAPLUS Co., Ltd.)
Hwang, Do-Weon (ALPHAPLUS Co., Ltd.)
Lee, Jae-Young (School of Nano System Engineering, Inje University)
Publication Information
Journal of the Korean Vacuum Society / v.18, no.2, 2009 , pp. 102-107 More about this Journal
Abstract
We investigated optical emission of oxygen plasma discharged by 13.56 MHz radio frequency (rf) by using optical emission spectroscopy (OES). Experimental measurement is done at a range of oxygen flow rate of 1$\sim$20 seem, rf power of 25$\sim$250 W, and orifice 3 and 5 mm in diameter. When oxygen plasma was generated, typical emission spectra for oxygen plasma were observed regardless of diameter of orifice. Strong atomic emission lines are observe at 776.8 an 843.9 nm, corresponding to the $3p^{5}P-3s^{5}S^{0}$ and $3p^{3}P-3s^{3}S^{0}$ transitions, respectively. The emission intensity of line at 776.8 and 843.9 nm increased with increasing the oxygen flow rate and rf power. The increasing rate of emission intensity of 776.8 nm line was larger than that of 843.9 nm line. When the diameter of orifice was 3 mm, the oxygen plasma was more stably generated than orifice 5 mm in diameter.
Keywords
RF plasma; Oxygen plasma; Optical emission spectroscopy; Plasma-assisted molecular beam epitaxy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S.-H. Lima, D. Shindoa, H.-B. Kangb, and K. Nakamura, J. Cryst. Growth 225, 208 (2001)
2 K. Hirano, M. Fujita, M. Sasajima, T. Kosaka, and y. Horikoshi, J. Cryst. Growth 301-302, 370 (2007)
3 D. D. Berkley, B. R. Johnson, N. Anand, K. M. Beauchamp, L. E. Conroy, A. M. Goldman, J. Maps, K. Mauersberger, M. L. Mecartney, J. Morton, M. Tuominen, and Y-J. Zhang, Appl. Phys. Lett. 53, 1973 (1988)   DOI
4 A. Gupta and B. W. Hussey, Appl. Phys. Lett. 58, 1211 (1991)   DOI
5 K. Yamauchi, K. Takahashi, and E. Yabe, Rev. Sci. Instrum. 64, 2434 (1993)   DOI   ScienceOn
6 J. W. Lee, J. H. Choi, S. K. Han, S. M. Yang, S. K Hong, and J. Y. Lee, J. Cryst. Growth 310, 1118 (2008)   DOI   ScienceOn
7 J. Musil, J. Matous, and A. Raj sky, Czech. J. Phys. 43, 533 (1993)
8 S. P. Sharma, B. A. Cruden, M. V. V. S. Rao, and A. A. Bolshakov, J. AppL Phys. 95, 3324 (2004)   DOI   ScienceOn
9 T. Makino, G. Isoya, Y. Segawa, C. H. Chia, T. Yasuda, M. Kawasaki, A. Ohtomo, K Tamura, and H. Koinuma, J. Cryst. Growth 214-215, 289 (2000)
10 S. K. Lee, J. Y. Kim, H. S. Kwack, B. J. Kwon, H. J. Ko, T. Yao, and Y. H. Cho, J. Kor. Vac. Soc. 16, 463 (2007)   DOI   ScienceOn
11 Z. Yang, J.-H. Lim, S. Chu, Z. Zuo, and J. L. Liu, Appl. Surf. Sci. 255, 3375 (2008)
12 H. J. Ko, Y. Chen, S. K Hong, and T. Yao, J. Cryst. Growth 209, 816 (2000)   DOI   ScienceOn
13 D. M. Keams, D. R. Gillen, D. Voulot, R. W. 106 McCullough, W. R. Thompson, G. J. Cosimini, E. Nelson, P. P. Chow, and J. Klaassen, J. Vac. Sci. Technol. A 19, 993 (2001)   DOI   ScienceOn
14 U. Cvelbar, N. Krstulovic, S. Milosevic, and M. Mozetic, Vacuum 82, 224 (2008)
15 A. Schuhl, R. Cabanel, S. Lequien, B. Ghyselen, S. Tyc, G. Creuzet, and J. Siejka, Appl. Phys. Lett. 57, 819 (1990)   DOI
16 J. S. Wang, C. S. Yang, M. J. Liou, C. X. Wu, K. C. Chiu, and W. C. Chou, J. Cryst. Growth 310, 4503 (2008)   DOI   ScienceOn
17 P. O' keeffe, S. Komuro, S. Den, T. Morikawa, andy. Aoyagi, Jpn. J. Appl. Phys. 30, 3164 (1991).   DOI
18 E. J. H. Collart, J. A. G. Baggerman, and R. J. Visser, J. AppL Phys. 70, 5278 (1991)   DOI
19 C. J. Pan, C. W. Tu, C. J. Tun, C. C. Lee, and G. C. Chi, J. Cryst. Growth 305, 133 (2007)   DOI   ScienceOn
20 Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998)   DOI   ScienceOn
21 T. Terashima, K. Iijima, K. Yamamoto, Y. Bando, and H. Mazaki, Jpn. J. Appl. phys. 27, L91 (1988)   DOI   ScienceOn
22 S. Im, B. J. Jin, and S. Yi, J. AppL Phys. 87, 4558 (2000)   DOI   ScienceOn
23 S. Watanabe, M. Kawai, and T. Hanada, Jpn. J. Appl. Phys. 29, L1111 (1990)   DOI
24 R. E. Walkup, K. L. Saenger, and G. S. Selwyn, J. Chem. Phys. 84, 2668 (1986)   DOI
25 M.-I. Kang, M.-W. Kim, y'-G. Kim, J.-W. Ryu, and H.-O. Jang, J. Kor. Vac. Soc. 17, 204 (2008)   DOI   ScienceOn