Browse > Article
http://dx.doi.org/10.5757/JKVS.2009.18.1.073

Study the Effects of Precursor Concentration on ZnO Nanorod Arrays by Hydrothermal Method  

Ryu, H. (Department of Nano Systems Engineering, High Safety Vehicle Core Technology Research Center, Inje University)
Publication Information
Journal of the Korean Vacuum Society / v.18, no.1, 2009 , pp. 73-78 More about this Journal
Abstract
Zinc Oxide (ZnO) nanorods arrays were deposited on ZnO buffered p-Si(100) substrates by hydrothermal method. The ZnO buffer layer with a thickness of 30 nm was deposited by metal oxide chemical vapor deposition at $500^{\circ}C$. The structural and optical properties of ZnO nanorods arrays controlled by precursor concentrations from 0.06 to 0.5 M were studied by FE-SEM(field emission scanning electron microscopy), XRD(X-ray diffraction), and PL(photoluminescence), respectively. It was found that the structural and optical properties of ZnO nanorods arrays are changed significantly with increase of precursor concentration. The sizes of diameter and length of nanorods were increased as the concentration increase, and good optical property was shown with the concentration of 0.3 M.
Keywords
Zinc oxide; Concentration; Hydrothermal method; Nanorod; Buffer layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.G Yoo, M.H. Kim, S.H. Jeong, and J.H Boo, J. Kor. Vac. Soc. 17, 73 (2008)   DOI   ScienceOn
2 J. B. Baxter and E. S. Aydil, Appl. Phys. Lett. 86, 053114 (2005)   DOI   ScienceOn
3 F. Li, Z. Li, and F. J. Jin. Mater. Lett. 61, 1876 (2007)   DOI   ScienceOn
4 S. Hirano, N. Takeuchi, S. Shimada, and K. Masuya, J. Appl. Phys. 98, 094305 (2005)   DOI   ScienceOn
5 X. W. Sun, J. L. Zhao, S. T. Tan, L. H. Tan, C. H. Tung, G. Q. Lo, D. L. Kwong, Y. W. Zhang, X. M. Li, and K. L. Teo, Appl. Phys. Lett. 92, 111113 (2008)   DOI   ScienceOn
6 B. Liu and H.C. Zeng, J. Am. Chern. Soc. 125, 4430 (2003)   DOI   ScienceOn
7 C.R. Kim. J.Y. Lee, C.M. Shin, J.Y. Leem, H. Ryu, J.H. Chang, H.C. Lee, C.S. Son, W.J. Lee, W.G. Jung, S.T. Tan, J.L. Zhao, and X.W. Sun, Solid State Commun. 148, 395 (2008)   DOI   ScienceOn
8 Z. Gui, X. Wang, J. Liu, S.S. Yan, Y.Y. Ding, Z.Z. Wang, and Y. Hua, J. Solid State Chem. 179, 1984 (2006)   DOI   ScienceOn
9 Q. Wan, Q. H. Li, Y. J. Chen, and T. H. Wang, Appl. Phys. Lett. 84, 3654 (2004)   DOI   ScienceOn
10 H. Jeon, V.P. Verma, K. Noh, D.H. Kim, W. Choi, and M. Jeon, J. Kor. Vac. Soc. 16, 359 (2007)   DOI   ScienceOn
11 A. B. Djurisic and Y. H. Leung, Small 2, 944 (2006)   DOI   ScienceOn
12 C. Pacholski, A. Komowski, and H. Weller, Angew. Chern. Int. Ed. 41, 1188 (2002)   DOI   ScienceOn
13 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001)   DOI   PUBMED   ScienceOn
14 Y.C. Lee, S.Y. Hu, W. Water, K.K. Tiong, Z.C. Feng, Y.T. Chen, J.C. Huang, J.W. Lee, C.C. Huang, 1.L.S, and M.H. Cheng, J. Lumin. 129, 148 (2009)   DOI   ScienceOn
15 J. J. Song, S. H. Baek, J. H. Lee, and S. W. Lim, J. Chem. Technol. Biotechnol. 83, 345 (2008)   DOI   ScienceOn
16 L. Wang, Y. Pu, W.Q. Fang, J.N. Dai, C.D. Zheng, C.L. Mo, C.B. Xiong, and F.Y. Jiang, Thin Solid Films 491, 323 (2005)   DOI   ScienceOn
17 MJ. Keum, I.H. Son, 1.S. Lee, S.K. Shin, and K.H. Kim, J. Kor. Vac. Soc. 12, 214 (2003)
18 T. Ma, M. Guo, M. Zhang, YJ. Zhang, and X.D. Wang, Nanotechnology 18, 035605 (2007)   DOI   ScienceOn
19 M. Guo, P. Diao, and S. M. Cai, J. Solid State Chem. 178, 1864 (2005)   DOI   ScienceOn
20 J. H. Yang, J. H. Lang, L. L. Yang, Y. J. Zhang, D. D. Wang, H. G. Fan, H. L. Liu, Y. X. Wang, and M. Gao, J. Alloy. Compd. 450, 521 (2008)   DOI   ScienceOn
21 R. Konenkamp, Robert C. Word, and C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004)   DOI   ScienceOn