Browse > Article
http://dx.doi.org/10.5757/JKVS.2007.16.4.298

Effect of N2 flow rate on growth and photoluminescence properties of GaN nanorods grown by using molecular beam epitaxy  

Park, Y.S. (Quantum Functional Semiconductor Research Center, Dongguk University)
Publication Information
Journal of the Korean Vacuum Society / v.16, no.4, 2007 , pp. 298-304 More about this Journal
Abstract
We have studied the effect of $N_2$ flow rate on the structural and optical properties of GaN nanorods grown on (111) Si substrates by radio-frequency plasma-assisted molecular-beam epitaxy. The hexagonal shape nanorods with lateral diameters from 80 to 190 nm with increasing $N_2$ flow rate from 1.1 to 2.0 sccm are obtained. However, the ratio of length (thickness) and compact region increases with increasing $N_2$ flow rate up to 1.7 sccm and then saturate. From the photoluminescence, free exciton transition is clearly observed for GaN nanorods with low $N_2$ flow rate. And the PL peak energies are blue-shifted with decreasing diameter of the GaN nanorods due to size effect. Temperature-dependent photoluminescence spectra for the nanorods with $N_2$ flow rate of 1.7 sccm show an abnormal behavior like "S-shape" with increasing temperature.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994)   DOI   ScienceOn
2 H. S. Kim, R. A. Mair, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 76, 1252 (2000)   DOI   ScienceOn
3 A. K. Viswanath, J. I. Lee, S. Yu, D. Kim, Y. Choi, and C-H. Hong, J. Appl. Phys. 84, 3848 (1998)   DOI   ScienceOn
4 H. Morkoc and S. N. Mohammand, Science 267, 51 (1995)   DOI   ScienceOn
5 E. Calleja, M. A. Sanchez-Garcia, F. J. Sanchez, F. Calle, F. B. Naranjo, E. Munoz, U. Jahn, and K. Ploog, Phys. Rev. B 62, 16826 (2000)   DOI   ScienceOn
6 X. F. Duan and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000)   DOI   ScienceOn
7 C. M. Park, Y. S. Park, H. Im, and T W Kang, Nanotechnology 17, 952 (2006)   DOI   ScienceOn
8 Y. P. Varshni, Physica 34, 149 (1967)   DOI   ScienceOn
9 J. Ristic, E. Calleja, M. A. Sanchez-Garcia, J. M. Ulloa, J. Sanchez-Paramo, J. M. Calleja, U. Jahn, A. Trampert, and K. H. Ploog, Phys. Rev. B 68, 125305 (2003)   DOI   ScienceOn
10 M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, J. Cryst. Growth 189/190, 138 (1998)   DOI   ScienceOn
11 M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto, and K. Kishino, J. Crystal Growth 189/190, 138 (1998)   DOI   ScienceOn
12 Y. S. Park, S. H. Lee, J. E. Oh, C. M. Park, and T. W. Kang, J. Crystal Growth. 282, 313 (2005)   DOI   ScienceOn
13 I. M. Tiginyanu, V. V. Ursaki, V. V. Zalamai, S. Langa, S. Hubbard, D. Pavlidis, and H. Foll, Appl. Phys. Lett. 83, 1551 (2003)   DOI   ScienceOn
14 C. M. Lieber, Solid State Commun. 107, 607 (1998)   DOI   ScienceOn
15 E. Calleja, M. A. Sanchez-Garcia, F. Calle, F. B. Naranjo, E. Munoz, U. Jahn, K. Ploog, J. Sanchez, J. M. Calleja, K. Saarinen, and P. Hautojarvi, Materials Science and Engineering B 82, 2 (2001)   DOI   ScienceOn
16 F. A. Ponce and D. P. Bour, Nature 386, 351 (1997)   DOI   ScienceOn
17 Y. Li, X. L. Chen, Z. Y. Qiao, Y. G. Cao, and Y. C. Lan, J. Crystal Growth 213, 408 (2000)   DOI   ScienceOn
18 X. Duan, J. Wang, and C. M. Lieber, Appl. Phys. Lett. 76, 1116 (2000)   DOI   ScienceOn
19 M. He, I. Minus, P. Zhou, S. Noor Mohammed, J. B. Halpern, R. Jacobs, W. L. Sarney, L. Salamanca-Riba, and R. D. Vispute, Appl. Phys. Lett. 77, 3731 (2000)   DOI   ScienceOn
20 Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998)   DOI   ScienceOn
21 L. T. Romano and T. H. Myers, Appl. Phys. Lett. 71, 3486 (1997)   DOI   ScienceOn
22 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science 273, 483 (1996)   DOI   ScienceOn