Browse > Article
http://dx.doi.org/10.5757/JKVS.2007.16.4.250

Morphology Evolution of GaAs(100) Surfaces during Inductively Coupled Plasma Etching at Biased Potential  

Lee, Sang-Ho (Department of Materials Science and Engineering, University of California)
Publication Information
Journal of the Korean Vacuum Society / v.16, no.4, 2007 , pp. 250-261 More about this Journal
Abstract
We present the morphological evolution at different source powers in the ion-enhanced etching of GaAs(100) in $BCl_3-Cl_2$ plasma. With little ion bombardment at floating potential, the surface develops <110> ridges and {111} facets, as it does in purely chemical etching. Higher source power (900 W) produces well developed crystallographic surfaces while lower source power (100 W) produces poorly developed crystallographic surfaces. This is attributed to the availability of excited reactive species (chlorine atoms) depending on source powers. With more concentration of the reactive species at higher source powers, the surface of GaAs(100) would be a surface that is expected from thermodynamics while the surface morphology would be determined by sputtering in the lack of reactive species. Statistical analysis of the surfaces, based on scaling theory, revealed two spatial exponents: one (smaller than one) is formed by atomic scale mechanisms, the other (larger than one) is formed by larger scale mechanisms which is believed to develop facets. When samples are biased, the surfaces experienced bombardment resulting in suppression of ridge formation at high source power and islands formation at low source power.
Keywords
Etching; surface; GaAs; scaling theory;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M.E.R. Dotto and M.U. Kleinke, Physica A 295, 149 (2001)   DOI   ScienceOn
2 E.A. Eklund, R. Bruinsma, J. Rudnick, and R.S. Williams, Phy. Rev. Lett. 67, 1759 (1991)   DOI   ScienceOn
3 D.C. Hays, Selective Etching of Compound Semiconductors, M.S. Thesis, University of Florida, Gainesville, 1999. p.100
4 I.I. Amirov, M.O. Izyumov, and O.V. Morozov, High Energy Chemistry 328, (2003)
5 J.P. Chang, J.C. Arnold, G.C.H. Zau, H.-S. Shin, and H.H. Sawin, J. Vac. Sci. Tech. A 15, 1853 (1997)
6 D.J. Whitehouse, Meas. Sci. Technol. 8, 955 (1997)   DOI   ScienceOn
7 D.W. Shaw, J. Crystal Growth 47, 509 (1979)   DOI   ScienceOn
8 M. Heyen and P. Balk, J. Crystal Growth, 53, 558 (1981)   DOI   ScienceOn
9 D.E. Ibbotson, D. L. Flamm, and V.M. Donnelly, J. Appl. Phys. 54, 5974 (1983)   DOI   ScienceOn
10 C.-H. Choi, L. Hultman, and S.A. Barnett, J. Vac. Sci. Tech. A 8, 1587 (1990)   DOI
11 이상호, 한국진공학회지, 제16권, 15 (2007)   과학기술학회마을   DOI
12 M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (John Wiley & Sons, Inc., New York,1994.)
13 Z. Maktadir, K. Sato, A. Mastumuro, K. Kayukawa, and M. Shikida, Mat. Res. Soc. Symp. Proc. 605, 305 (2000)
14 H.P. Gillis et al., Appl. Phys. Lett. 68, 2255 (1996)   DOI   ScienceOn
15 Wafer Technology Ltd. (UK)에서 구매
16 T. Ngo, E.J. Snyder, W.M. Tong, R.S. Williams, and M.S. Anderson, Surf. Sci. 314, L817 (1994)   DOI   ScienceOn
17 D.W. Shaw, J. Electrochem. Soc. 128, 874 (1981)   DOI   ScienceOn
18 J.E. Greene, S.A. Burnett, J.-E. Sundgren, and A. Rockett, in T. Itoh (ed.), Ion Beam Assisted film Growth, (Elsevier, New York, 1989), Chapter 5
19 J.W. Coburn and H.F. Winters, J. Appl. Phys. 50, 3189 (1979)   DOI   ScienceOn
20 L. Sha, R. Puthenkovilkam, Y.-S. Lin, and J.P. Chang J. Vac. Sci. Tech. B 21, 2420 (2003)   DOI   ScienceOn
21 C. Steinbruchel, Appl. Phys. Lett. 55, 1960 (1989)   DOI
22 C.-H. Choi, R. Ai, and S.A. Barnett, Phys. Rev. Lett. 67, 2826 (1991)   DOI   ScienceOn
23 W.M. Tong and R.S. Williams, Annu. Rev. Phys. Chem. 45, 401 (1994)   DOI   ScienceOn
24 M.V. Ramana Murty, et. al., Phys. Rev. Lett. 80, 4713 (1998)   DOI   ScienceOn
25 H.P. Gillis, 'Etching and Deposition,' in John Moore and Nicholas Spencer (eds.) Encylopedia of Chemical Physics and Physical Chemistry, (Institute of Physics, Philadelphia, PA, 2001). Chapter 2.18, pp. 2613-2630
26 T. Ohmi, K. Kotani, A. Teramoto, and M. Miyashita, IEEE Electron Device Lett. 12, 652 (1991)   DOI   ScienceOn
27 S. Rohde, S.A. Barnett, and C.-H. Choi, J. Vac. Sci. Tech. A 7, 2273 (1989)   DOI
28 T. Ngo, E.J. Snyder, W.M. Tong, R.S. Williams, and M.S. Anderson, Surf. Sci. 314, L817 (1994)   DOI   ScienceOn
29 A.-L. Barabasi, and H.E. Stanley, Fractal concepts in Surface Growth, Cambridge University Press, 1995
30 C. Steinbruchel, Appl. Phys. Lett. 55, 1960 (1989)   DOI
31 M. Kitabatake, P. Fons, and J.E. Greene, J. Vac. Sci. Technol. A 8, 3726 (1990)   DOI
32 E. Hu and C.H. Chen, Microelectronic Engineering 35, 23 (1997)   DOI   ScienceOn
33 K.K. Ko, K. Kamath, O. Zia, E. Berg, S.W. Pang, and P. Bhattacharya, J. Vac. Sci. Tech. B 13, 2709 (1995)
34 H.F. Winters and J.W. Coburn, Surf. Sci. Rep. 14, 161 (1992)
35 M. Saitou, M. Hokama, and W. Oshikawa, Appl. Surf. Sci. 185, 79 (2001)   DOI   ScienceOn
36 J.P. Chang, A.P. Mahorowala, and H.H. Sawin, J. Vac. Sci. Tech. A 16, 217 (1998)   DOI   ScienceOn
37 F.F. Chen and J.P. Chang, Lecture Notes on Principles of Plasma Processing, (Kluwer Academic/Plenum Publishers, New York, 2003)
38 M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, (John Wiley & Sons, Inc., New York, 1994.) p. 161
39 J. Ding et. al., J. Vac. Sci. Technol. A 11, 1283 (1993)   DOI   ScienceOn
40 C. Steinbruchel, Appl. Phys. Lett. 55, 1960 (1989)   DOI
41 S.H. Lee, C. Ratsch, H.P. Gillis, Appl. Phys. Lett., 88, 161916 (2006)   DOI   ScienceOn