Browse > Article
http://dx.doi.org/10.5757/JKVS.2007.16.3.197

Change of Schottky barrier height in Er-silicide/p-silicon junction  

Lee, Sol (Department of Nano Science & Technology, University of Seoul)
Jeon, Seung-Ho (DongbuAnam Semiconductor Nano-Photo)
Ko, Chang-Hun (Department of Physics, University of Seoul)
Han, Moon-Sup (Department of Physics, University of Seoul)
Jang, Moon-Gyu (IT Fusion Technology Research Division, ETRI)
Lee, Seong-Jae (Department of Physics, Hanyang University)
Park, Kyoung-Wan (Department of Nano Science & Technology, University of Seoul)
Publication Information
Journal of the Korean Vacuum Society / v.16, no.3, 2007 , pp. 197-204 More about this Journal
Abstract
Ultra thin Er-silicide layers formed by Er deposition on the clean p-silicon and in situ post annealing technique were investigated with respect to change of the Schottky barrier height. The formation of Er silicides was confirmed by XPS results. UPS measurements revealed that the workfunction of the silicide decreased and was saturated as the deposited Er thickness increased up to $10{\AA}$. We found that the silicides were mainly composed of Er5Si3 phase through the XRD experiments. After Schottky diodes were fabricated with the Er silicide/p-Si junctions, the Schottky barrier heights were calculated $0.44{\sim}0.78eV$ from the I-V measurements of the Schottky diodes. There was large discrepancy in the Schottky barrier heights deduced from the UPS with the ideal junction condition and the real I-V measurements, so that we attributed the discrepancy to the $Er_5Si_3$ phase in the Er-silicides and the large interfacial density of trap state of it.
Keywords
Er-silicide; Schottky junction; Ultraviolet Photoemission Spectroscopy; Schottky diode; Work function; Schottky barrier height;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. S. Lau, C. S. Pai, C. S. Wu, T. F. Kuech, and B. X. Liu, Appl. Phys. Lett. 41, 77 (1982)   DOI
2 M. Jang, Y. Kim, J. Shin, S. Lee, and K. Park, Appl. Phys. Lett. 84, 741 (2004)   DOI   ScienceOn
3 J. Yang, Q. Cai, X. D. Wang, and R. Koch, Sur.Sci. 526, 291 (2003)   DOI   ScienceOn
4 L. Haderbache, P.Wetzel, C. Pirri, J. C. Peruchetti, D. Bolmont, and G. Gewinner, Appl. Phys. Lett. 57, 341 (1990)   DOI
5 E. Bucher, S. Schulz, M. Ch. Lux-Steiner, P. Munz, U. Gubler, and F. Greuter, Appl. Phys. A 40, 71 (1986)   DOI
6 M.Q. Huda and K. Sakamoto, Mater. Sci. Eng. B 89, 378 (2002)   DOI   ScienceOn
7 R. Menozzi, Solid-State Electronics 38, 1511 (1995)   DOI   ScienceOn
8 B. Pellegrini, Solid-State Electronics 18, 417 (1975)   DOI   ScienceOn
9 M. Jang and J. Lee, ETRI journal 24, 455 (2002)
10 S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), pp.270
11 J. P. Snyder, C. R. Helms, and Y. Nishi, Appl. Phys. Lett. 67, 1420 (1995)   DOI   ScienceOn
12 X. Zhenjia, Properties of Metal Silicides (INSPEC, London, 1995), pp.169-172, 217-223
13 M. Jang, Y. Kim, J. Shin, and S. Lee, Mater. Sci. Eng. B 114-115, 51 (2004)   DOI   ScienceOn
14 R. T. Tung, Phys. Rev. Lett. 84, 6078 (2000)   DOI   ScienceOn
15 L. E. Calvet, H. Luebben, M. A. Reed, C. Wang, J. P. Snyder, and J. R. Tucker, J. Appl. Phys. 91, 757 (2002)   DOI   ScienceOn
16 S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981), pp.492
17 S. Fujii, Y. Michishita, N. Miyamae, H. Suto, S. Honda, H. Okado, K. Oura, and M. Katayama, Thin Solid Films 508, 82 (2006)   DOI   ScienceOn