Browse > Article

Anomalous Effect of Hydrogenation on the Optical Characterization $In_{0.5}Ga_{0.5}As$ Quantum Dot Infrared Photodetectors  

Lim J.Y. (Nano Device Research Center, Korea Institute of Science and Technology, Dept. of Physics, Chung Ang University)
Song J.D. (Nano Device Research Center, Korea Institute of Science and Technology)
Choi W.J. (Nano Device Research Center, Korea Institute of Science and Technology)
Cho W.J. (Nano Device Research Center, Korea Institute of Science and Technology)
Lee J.I. (Nano Device Research Center, Korea Institute of Science and Technology)
Yang H.S. (Dept. of Physics, Chung Ang University)
Publication Information
Journal of the Korean Vacuum Society / v.15, no.2, 2006 , pp. 223-230 More about this Journal
Abstract
We have investigated the characteristics of hydrogen (H) plasma treated quantum dot infrared photodetectors (QDIPs). The structure used in this study consists of 3 stacked, self assembled $In_{0.5}Ga_{0.5}As/GaAs$ QD layer separated by GaAs barrier layers that were grown by molecular beam epitaxy. Optical characteristics of QDIPs, such as photoluminescence (PL) spectra and photocurrent spectra, have been studied and compared with each other for the as grown and H plasma treated QDIPs. H plasma treatment, resulted in the splitting of PL peak, which can be attributed to the redistribution of the size of QDs. The activation energies estimated from the temperature dependence of integrated PL intensity for as grown and H plasma treated QDIPs are found to be in good agreement with those determined from corresponding peaks of photocurrent spectra. It is also noted that photocurrent is detected up to 130 K for the H plasma treated QDIP, suggesting the future possibility for the development of infrared photodetectors with high temperature operation.
Keywords
quantum dot; Quantum dot infrared photodetector; Hydrogen plasma treatment; Photoluminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Higai and T. Ohno, Appl. Phys. Lett. 78, 3839 (2001)   DOI   ScienceOn
2 J. M. Javada, R. G. Wilson, C. R. Abernathy, and S. J. Pearton, Appl. Phys. Lett. 64, 2724 (1994)   DOI   ScienceOn
3 G. N. Panin, T. W. Kang, T. W. Kim, S. H. Park, S. M. Si, Y. S. Ryu, and H. C. Jeon, Physica. E. 17, 484 (2003)   DOI   ScienceOn
4 S. Nahm, H. J. Lee, and H. Ryu, J. Crystal Growth. 182, 292 (1997)   DOI
5 B. Lita and R. S. Goldman, J. D. Phillips, and P. K. Bhattacharya, Appl. Phys. Lett. 75, 2797 (1999)   DOI   ScienceOn
6 K. Mukai, Y. Nakata, K. Otsubo, M. Sugawara, N. Yokoyama, and H. Ishikawa, Appl. Phys. Lett. 76, 3349 (2000)   DOI   ScienceOn
7 C. Weisbuch and B. Vinter, Quantum Semiconductor Structures (Academic, New York, 1991)
8 Sh. U. Yuldashev, I. L. Bolotion, Y. B. Hou, J. H. Leem, H. C. Jeon, T. W. Kang, and T. W. Kim, J. Appl. Phys. 86, 859 (1999)   DOI
9 S. -K. Park, Y. J. Park, E. K. Kim, C. J. Park, H. Y. Cho, Y. S. Lim, J. Y. Lee, and C. Lee, Jpn. J. Appl. Phys. 41, 4378 (2002)   DOI
10 D. Pan, E. Towe, and S. Kennerly, Appl. Phys. Lett. 73, 1937 (1998)   DOI   ScienceOn
11 A. Herro, S. A. Ringel, M. Hansem, J. S. Speck, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 77, 1499 (2000)   DOI   ScienceOn
12 M. Vening, D. J. Dunstan, and K. P. Homewood, Phys. Rev. B 48 2412 (1993)   DOI
13 S. -F. Tang, S. -Y. Lin, and S. -C Lee, Appl. Phys. Lett. 78, 2428 (2001)   DOI   ScienceOn
14 Bhattacharya, S. Krishna, J. Phillips, P. J. McCann, and K. Namjou, J. Cryst. Growth. 227-228, 27 (2001)
15 J. D. Lambkin, D. J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emery, Appl. Phys. Lett. 57, 1986 (1990)   DOI
16 R. L. Sellin, Ch. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, Appl. Phys. Lett. 78, 1207 (2001)   DOI   ScienceOn
17 S. Maimon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia, and P. M. Petroff, Appl. Phys. Lett. 73, 2003 (1998)   DOI   ScienceOn
18 A. P. Jacob, Q. X. Zhao, M. Willander, F. Ferdos, M. Sadeghi, and S. M. Wang, J. Appl. Phys. 92, 6794 (2002)   DOI   ScienceOn