1 |
Mansfield P. Nmr imaging in biomedicine: Supplement 2 advances in magnetic resonance: Access Online via Elsevier, 1982
|
2 |
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the MRI single-subject brain. Neuroimage 2002;15:273-289
DOI
ScienceOn
|
3 |
Ostergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part i: Mathematical approach and statistical analysis. Magn Reson Med 1996;36: 715-725
DOI
ScienceOn
|
4 |
Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999;10:223-232
DOI
ScienceOn
|
5 |
Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium (iii) chelates as MRI contrast agents: structure, dynamics, and applications. Chemical Reviews 1999;99:2293-2352
DOI
ScienceOn
|
6 |
Jacques V, Desreux JF. New classes of MRI contrast agents. In Contrast agents i: Springer, 2002:123-164
|
7 |
Aime S, Botta M, Terreno E. Gd (iii)-based contrast agents for MRI. Adv Inorg Chem 2005;57:173-237
DOI
|
8 |
Tofts PS. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 1997;7:91-101
DOI
ScienceOn
|
9 |
Hamm B, Staks T, Muhler A, et al. Phase i clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: Safety, pharmacokinetics, and MR imaging. Radiology 1995;195:785- 792
DOI
|
10 |
Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 2006;35:512- 523
DOI
ScienceOn
|
11 |
Kobayashi H, Kawamoto S, Jo SK, Bryant HL, Brechbiel MW, Star RA. Macromolecular MRI contrast agents with small dendrimers: pharmacokinetic differences between sizes and cores. Bioconjugate Chem 2003;14:388-394
DOI
ScienceOn
|
12 |
Dutta S, Park JA, Jung JC, Chang Y, Kim TJ. Gd-complexes of DTPA-bis (amide) conjugates of tranexamic acid and its esters with high relaxivity and stability for magnetic resonance imaging. Dalton Trans 2008;28:2199-2206
|
13 |
Gu S, Kim HK, Lee GH, Kang BS, Chang Y, Kim TJ. Gdcomplexes of 1, 4, 7, 10-tetraazacyclododecane-n, n′, n′′, n′′′-1, 4, 7, 10-tetraacetic acid (DOTA) conjugates of tranexamates as a new class of blood-pool magnetic resonance imaging contrast agents. J Med Chem 2010;54:143-152
|
14 |
Wedeking P, Kumar K, Tweedle M. Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn Reson Imaging 1992;10:641-648
DOI
ScienceOn
|
15 |
Samiotaki G, Vlachos F, Tung YS, Konofagou EE. A quantitative pressure and microbubble-size dependence study of focused ultrasound-induced blood-brain barrier opening reversibility in vivo using mri. Magn Reson Med 2012;67:769-777
DOI
ScienceOn
|
16 |
Parmelee DJ, Walovitch RC, Ouellet HS, Lauffer RB. Preclinical evaluation of the pharmacokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest Radiol 1997;32:741-747
DOI
ScienceOn
|
17 |
Zech CJ, Vos B, Nordell A, Urich M, Blomqvist L, Breuer J. Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses gd-eob-dtpa (gadoxetic acid) with standard gddtpa. Invest Radiol 2009;44:305-310
DOI
ScienceOn
|
18 |
Fasano M, Curry S, Terreno E, et al. The extraordinary ligand binding properties of human serum albumin. IUBMB life 2005;57:787-796
DOI
ScienceOn
|
19 |
Borlongan C, Emerich D. Facilitation of drug entry into the cns via transient permeation of blood brain barrier: laboratory and preliminary clinical evidence from bradykinin receptor agonist, cereport. Brain Res Bull 2003;60:297-306
DOI
ScienceOn
|