Browse > Article
http://dx.doi.org/10.13104/imri.2021.25.4.229

Advances in Fast Vessel-Wall Magnetic Resonance Imaging Using High-Density Coil Arrays  

Yin, Xuetong (Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences)
Li, Nan (Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences)
Jia, Sen (Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences)
Zhang, Xiaoliang (Department of Biomedical Engineering, State University of New York at Buffalo)
Li, Ye (Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences)
Publication Information
Investigative Magnetic Resonance Imaging / v.25, no.4, 2021 , pp. 229-251 More about this Journal
Abstract
Arteriosclerosis is the leading cause of stroke, with a fatality rate surpassing that of ischemic heart disease. High-resolution vessel wall magnetic resonance imaging is generally recognized as a non-invasive and panoramic method for the evaluation of arterial plaque; however, this method requires improved signal-to-noise ratio and scanning speed. Recent advances in high-density head and neck coil arrays are characterized by broad coverage, multiple channels, and closefitting designs. This review analyzes fast magnetic resonance imaging from the perspective of accelerated algorithms for vessel wall imaging and demonstrates the need for effective algorithms for signal acquisition using advanced radiofrequency system. We summarize different phased-array structures under various experimental objectives and equipment conditions, introduce current research results, and propose prospective research studies in the future.
Keywords
Fast imaging; Vessel wall imaging; RF coil array; Acceleration; Decoupling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou Z, Li R, Zhao X, et al. Evaluation of 3D multi-contrast joint intra- and extracranial vessel wall cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2015;17:41   DOI
2 Kraff O, Bitz AK, Breyer T, et al. A transmit/receive radiofrequency array for imaging the carotid arteries at 7 Tesla: coil design and first in vivo results. Invest Radiol 2011;46:246-254   DOI
3 Hu X, Zhang L, Zhang X, et al. An 8-channel RF coil array for carotid artery MR imaging in humans at 3 T. Med Phys 2016;43:1897   DOI
4 Zhang Q, Coolen BF, van den Berg S, et al. Comparison of four MR carotid surface coils at 3T. PLoS One 2019;14:e0213107   DOI
5 Yuan C, Mitsumori LM, Ferguson MS, et al. In vivo accuracy of multispectral magnetic resonance imaging for identifying lipid-rich necrotic cores and intraplaque hemorrhage in advanced human carotid plaques. Circulation 2001;104:2051-2056   DOI
6 Wu B, Qu P, Wang C, Yuan J, Shen GX. Interconnecting L/C components for decoupling and its application to lowfield open MRI array. Concepts Magn Reson Part B (Magn Reson Engineering) 2007;31B:116-126   DOI
7 Wu B, Zhang X, Qu P, Shen GX. Capacitively decoupled tunable loop microstrip (TLM) array at 7 T. Magn Reson Imaging 2007;25:418-424   DOI
8 Li N, Liu S, Hu X, Luo C, Zhang X, Li Y. Electromagnetic field and radio frequency circuit co-simulation for magnetic resonance imaging dual-tuned radio frequency coils. IEEE Trans Magn 2018;54:5100504
9 Li N, Liu S, Chen Q, et al. A fast electromagnetic field and radio frequency circuit co-simulation approach for strongly coupled coil array in magnetic resonance imaging. IEEE Trans Magn 2018;54:5100905
10 Yan X, Zhang X, Feng B, Ma C, Wei L, Xue R. 7T transmit/receive arrays using ICE decoupling for human head MR imaging. IEEE Trans Med Imaging 2014;33:1781-1787   DOI
11 Li N, Chen Q, Luo C, et al. Investigation of a dual-tuned RF coil array decoupled using ICE technique for 1 H/19 F MR imaging at 3T. IEEE Trans Magn 2020;56:1-4
12 Connell IR, Gilbert KM, Abou-Khousa MA, Menon RS. Design of a parallel transmit head coil at 7T with magnetic wall distributed filters. IEEE Trans Med Imaging 2015;34:836-845   DOI
13 Hernandez D, Kim KN. A review on the RF coil designs and trends for ultra high field magnetic resonance imaging. Investig Magn Reson Imaging 2020;24:95-122   DOI
14 Wang H, Qiu Z, Su S, et al. Parameter optimization framework on wave gradients of Wave-CAIPI imaging. Magn Reson Med 2020;83:1659-1672   DOI
15 Wiggins GC, Triantafyllou C, Potthast A, Reykowski A, Nittka M, Wald LL. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magn Reson Med 2006;56:216-223   DOI
16 Yan X, Gore JC, Grissom WA. New resonator geometries for ICE decoupling of loop arrays. J Magn Reson 2017;277:59-67   DOI
17 Sui J, Wu KL. A self-decoupled antenna array using inductive and capacitive couplings cancellation. IEEE Trans Antennas Propag 2020;68:5289-5296   DOI
18 Lakshmanan K, Cloos M, Brown R, Lattanzi R, Sodickson DK, Wiggins GC. The "Loopole" antenna: a hybrid coil combining loop and electric dipole properties for ultrahigh-field MRI. Concepts Magn Reson Part B Magn Reson Eng 2020;2020:8886543
19 Li Y, Wei Z, Han S, et al. In-vivo human brain imaging at 5 T using a 48 channel Tx-Rx array. In Proceedings of the 29th Annual Meeting of ISMRM, 2021:1572
20 Pang Y, Wu B, Jiang X, Vigneron DB, Zhang X. Tilted microstrip phased arrays with improved electromagnetic decoupling for ultrahigh-field magnetic resonance imaging. Medicine (Baltimore) 2014;93:e311   DOI
21 Clement JD, Gruetter R, Ipek O. A human cerebral and cerebellar 8-channel transceive RF dipole coil array at 7T. Magn Reson Med 2019;81:1447-1458   DOI
22 Zhang X, Ugurbil K, Chen W. Microstrip RF surface coil design for extremely high-field MRI and spectroscopy. Magn Reson Med 2001;46:443-450   DOI
23 Yan X, Xue R, Zhang X. Closely-spaced double-row microstrip RF arrays for parallel MR imaging at ultrahigh fields. Appl Magn Reson 2015;46:1239-1248   DOI
24 Connell IRO, Menon RS. Shape optimization of an electric dipole array for 7 Tesla neuroimaging. IEEE Trans Med Imaging 2019;38:2177-2187   DOI
25 Yan X, Wei L, Xue R, Zhang X. Hybrid monopole/loop coil array for human head MR imaging at 7T. Appl Magn Reson 2015;46:541-550   DOI
26 Avdievich NI, Giapitzakis IA, Pfrommer A, Borbath T, Henning A. Combination of surface and 'vertical' loop elements improves receive performance of a human head transceiver array at 9.4 T. NMR Biomed 2018;31 [Epub ahead of print]
27 Jakob PM, Griswold MA, Edelman RR, Sodickson DK. AUTO-SMASH: a self-calibrating technique for SMASH imaging. SiMultaneous Acquisition of Spatial Harmonics. MAGMA 1998;7:42-54   DOI
28 Haacke EM, Lindskogj E, Lin W. A fast, iterative, partial-fourier technique capable of local phase recovery. J Magn Reson (1969) 1991;92:126-145   DOI
29 Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic resonance imaging. IEEE Trans Med Imaging 1991;10:154-163   DOI
30 Sodickson DK, Manning WJ. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 1997;38:591-603   DOI
31 Donoho DL. Compressed sensing. IEEE Trans Information Theory 2006;52:1289-1306   DOI
32 Cohen-Adad J, Mareyam A, Keil B, Polimeni JR, Wald LL. 32-channel RF coil optimized for brain and cervical spinal cord at 3 T. Magn Reson Med 2011;66:1198-1208   DOI
33 Zhang Z, Fan Z, Kong Q, et al. Visualization of the lenticulostriate arteries at 3T using black-blood T1-weighted intracranial vessel wall imaging: comparison with 7T TOF-MRA. Eur Radiol 2019;29:1452-1459   DOI
34 Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195   DOI
35 Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature 2018;555:487-492   DOI
36 Jin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process 2017;26:4509-4522   DOI
37 Xie Y, Yang Q, Xie G, Pang J, Fan Z, Li D. Improved black-blood imaging using DANTE-SPACE for simultaneous carotid and intracranial vessel wall evaluation. Magn Reson Med 2016;75:2286-2294   DOI
38 Zhang L, Zhang N, Wu J, et al. High resolution three dimensional intracranial arterial wall imaging at 3 T using T1 weighted SPACE. Magn Reson Imaging 2015;33:1026-1034   DOI
39 Ugurbil K, Auerbach E, Moeller S, et al. Brain imaging with improved acceleration and SNR at 7 Tesla obtained with 64-channel receive array. Magn Reson Med 2019;82:495-509   DOI
40 Hendriks AD, Luijten PR, Klomp DWJ, Petridou N. Potential acceleration performance of a 256-channel whole-brain receive array at 7 T. Magn Reson Med 2019;81:1659-1670   DOI
41 Feinberg DA, Hale JD, Watts JC, Kaufman L, Mark A. Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology 1986;161:527-531   DOI
42 Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962   DOI
43 Heidemann RM, Griswold MA, Haase A, Jakob PM. VD-AUTO-SMASH imaging. Magn Reson Med 2001;45:1066-1074   DOI
44 Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210   DOI
45 Liang D, Liu B, Wang J, Ying L. Accelerating SENSE using compressed sensing. Magn Reson Med 2009;62:1574-1584   DOI
46 Breuer FA, Blaimer M, Mueller MF, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med 2006;55:549-556   DOI
47 Hayes CE, Mathis CM, Yuan C. Surface coil phased arrays for high-resolution imaging of the carotid arteries. J Magn Reson Imaging 1996;6:109-112   DOI
48 Adriany G, Van de Moortele PF, Wiesinger F, et al. Transmit and receive transmission line arrays for 7 Tesla parallel imaging. Magn Reson Med 2005;53:434-445   DOI
49 Von Morze C, Tropp J, Banerjee S, et al. An eight-channel, nonoverlapping phased array coil with capacitive decoupling for parallel MRI at 3 T. Concepts Magn Reson B: Magn 2007;31:37-43   DOI
50 Tavaf N, Lagore RL, Jungst S, et al. A self-decoupled 32-channel receive array for human-brain MRI at 10.5 T. Magn Reson Med 2021;86:1759-1772   DOI
51 Wiesinger F, De Zanche N, Pruessmann KP. Approaching ultimate SNR with finite coil arrays. In Proceedings of the 13th Annual Meeting of ISMRM, 2005:672
52 Koning W, Bluemink JJ, Langenhuizen EA, et al. High-resolution MRI of the carotid arteries using a leaky waveguide transmitter and a high-density receive array at 7 T. Magn Reson Med 2013;69:1186-1193   DOI
53 Beck MJ, Parker DL, Bolster BD Jr, et al. Interchangeable neck shape-specific coils for a clinically realizable anterior neck phased array system. Magn Reson Med 2017;78:2460-2468   DOI
54 Ruytenberg T, Webb A, Zivkovic I. A flexible five-channel shielded-coaxial-cable (SCC) transceive neck coil for high-resolution carotid imaging at 7T. Magn Reson Med 2020;84:1672-1677   DOI
55 Wiggins GC, Polimeni JR, Potthast A, Schmitt M, Alagappan V, Wald LL. 96-channel receive-only head coil for 3 Tesla: design optimization and evaluation. Magn Reson Med 2009;62:754-762   DOI
56 Lattanzi R, Grant AK, Polimeni JR, et al. Performance evaluation of a 32-element head array with respect to the ultimate intrinsic SNR. NMR Biomed 2010;23:142-151   DOI
57 Keil B, Blau JN, Biber S, et al. A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med 2013;70:248-258   DOI
58 Zamarayeva AM, Gopalan K, Corea JR, et al. Custom, spray coated receive coils for magnetic resonance imaging. Sci Rep 2021;11:2635   DOI
59 Xihai Z, Cheng L, Fuhua Y. Expert consensus on techniques and application of intracranial MR vessel wall imaging in China. Chin J Radiol 2019;53:1045-1059
60 Keil B, Wald LL. Massively parallel MRI detector arrays. J Magn Reson 2013;229:75-89   DOI
61 Ruytenberg T, O'Reilly TP, Webb AG. Design and characterization of receive-only surface coil arrays at 3T with integrated solid high permittivity materials. J Magn Reson 2020;311:106681   DOI
62 Bernstein F, Slavin G, Day RA, Macaluso F, Wolff SD. A phased array coil optimized for carotid artery imaging. In Proceedings of the International Society for Magnetic Resonance in Medicine, 1999:163
63 Anumula S, Song HK, Wright AC, Wehrli FW. High-resolution black-blood MRI of the carotid vessel wall using phased-array coils at 1.5 and 3 Tesla. Acad Radiol 2005;12:1521-1526   DOI
64 Li F, McDermott MM, Li D, et al. The association of lesion eccentricity with plaque morphology and components in the superficial femoral artery: a high-spatial-resolution, multi-contrast weighted CMR study. J Cardiovasc Magn Reson 2010;12:37   DOI
65 Sapkota N, Thapa B, Lee Y, et al. Eight-channel decoupled array for cervical spinal cord imaging at 3T: six-channel posterior and two-channel anterior array coil. Concepts Magn Reson Part B 2016;46B:90-99   DOI
66 Hu Z, van der Kouwe A, Han F, et al. Motion-compensated 3D turbo spin-echo for more robust MR intracranial vessel wall imaging. Magn Reson Med 2021;86:637-647   DOI
67 Fan Z, Zhang Z, Chung YC, et al. Carotid arterial wall MRI at 3T using 3D variable-flip-angle turbo spin-echo (TSE) with flow-sensitive dephasing (FSD). J Magn Reson Imaging 2010;31:645-654   DOI
68 Avdievich NI, Solomakha G, Ruhm L, Scheffler K, Henning A. Evaluation of short folded dipole antennas as receive elements of ultra-high-field human head array. Magn Reson Med 2019;82:811-824   DOI
69 Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 2002;106:1368-1373   DOI
70 Gong E, Huang F, Ying K, Wu W, Wang S, Yuan C. PROMISE: parallel-imaging and compressed-sensing reconstruction of multicontrast imaging using SharablE information. Magn Reson Med 2015;73:523-535   DOI
71 Koolstra K, van Gemert J, Bornert P, Webb A, Remis R. Accelerating compressed sensing in parallel imaging reconstructions using an efficient circulant preconditioner for cartesian trajectories. Magn Reson Med 2019;81:670-685   DOI
72 Haldar JP, Zhuo J. P-LORAKS: low-rank modeling of local k-space neighborhoods with parallel imaging data. Magn Reson Med 2016;75:1499-1514   DOI
73 Vaidya MV, Sodickson DK, Lattanzi R. Approaching ultimate intrinsic SNR in a uniform spherical sample with finite arrays of loop coils. Concepts Magn Reson Part B Magn Reson Eng 2014;44:53-65   DOI
74 Li Y, Lee J, Zhang L, et al. Design and testing of a 24-channel head coil for MR imaging at 3T. Magn Reson Imaging 2019;58:162-173   DOI
75 Wang X, Li R, Hayes C, Balu N, Zhao X, Yuan C. A new designed 36-channel neurovascular coil at 3T. In Proceedings of the 20th Annual Meeting of ISMRM, 2012:2787
76 Han J, Xin X, Chen W. Decoupling of multi-channels RF coil and its application to intraoperative MR-guided focused ultrasound device. 2010 International Conference of Medical Image Analysis and Clinical Application, 2010:91-94
77 Avdievich NI, Giapitzakis IA, Pfrommer A, Henning A. Decoupling of a tight-fit transceiver phased array for human brain imaging at 9.4T: loop overlapping rediscovered. Magn Reson Med 2018;79:1200-1211   DOI
78 Quan Z, Gao Y, Qu S, et al. A 16-channel loop array for in vivo macaque whole-brain imaging at 3 T. Magn Reson Imaging 2020;68:167-172   DOI
79 Hadley JR, Roberts JA, Goodrich KC, Buswell HR, Parker DL. Relative RF coil performance in carotid imaging. Magn Reson Imaging 2005;23:629-639   DOI
80 Mahmutovic M, Scholz A, Kutscha N, et al. A 64-channel brain array coil with an integrated 16-channel field monitoring system for 3T MRI. In Proceedings of the 29th Annual Meeting of ISMRM, 2021:0623
81 Kong Q, Zhang Z, Yang Q, et al. 7T TOF-MRA shows modulated orifices of lenticulostriate arteries associated with atherosclerotic plaques in patients with lacunar infarcts. Eur J Radiol 2019;118:271-276   DOI
82 Porter JR, Wright SM, Reykowski A. A 16-element phased-array head coil. Magn Reson Med 1998;40:272-279   DOI
83 Jia S, Zhang L, Ren L, et al. Joint intracranial and carotid vessel wall imaging in 5 minutes using compressed sensing accelerated DANTE-SPACE. Eur Radiol 2020;30:119-127   DOI
84 Yan X, Wei L, Chu S, Xue R, Zhang X. Eight-channel monopole array using ICE decoupling for human head MR imaging at 7 T. Appl Magn Reson 2016;47:527-538   DOI
85 Wiesinger F, Boesiger P, Pruessmann KP. Electrodynamics and ultimate SNR in parallel MR imaging. Magn Reson Med 2004;52:376-390   DOI
86 Qureshi AI, Caplan LR. Intracranial atherosclerosis. Lancet 2014;383:984-998   DOI
87 Jia S, Qiu Z, Zhang L, Liu X, Zheng H, Liang D. Highly accelerated vessel wall imaging using CAIPIRINHA accelerated SPACE and IFR-CS. In Proceedings of the 28th Annual Meeting of ISMRM, 2020:1325
88 Qiu Z, Jia S, Su S, et al. Highly accelerated parallel MRI using wave encoding and virtual conjugate coils. Magn Reson Med 2021;86:1345-1359   DOI
89 Yuan J, Usman A, Reid SA, et al. Three-dimensional black-blood multi-contrast carotid imaging using compressed sensing: a repeatability study. MAGMA 2018;31:183-190   DOI
90 Zhu C, Tian B, Chen L, et al. Accelerated whole brain intracranial vessel wall imaging using black blood fast spin echo with compressed sensing (CS-SPACE). MAGMA 2018;31:457-467   DOI
91 Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans Med Imaging 2011;30:1028-1041   DOI
92 Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 2006;54:4311-4322   DOI
93 Lai Z, Qu X, Liu Y, et al. Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med Image Anal 2016;27:93-104   DOI
94 Zhan Z, Cai JF, Guo D, Liu Y, Chen Z, Qu X. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. IEEE Trans Biomed Eng 2016;63:1850-1861   DOI
95 Quan TM, Nguyen-Duc T, Jeong WK. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans Med Imaging 2018;37:1488-1497   DOI
96 Cogswell PM, Trzasko JD, Gray EM, et al. Application of adaptive image receive coil technology for whole-brain imaging. AJR Am J Roentgenol 2021;216:552-559   DOI
97 Zhang X, Ugurbil K, Chen W. A microstrip transmission line volume coil for human head MR imaging at 4T. J Magn Reson 2003;161:242-251   DOI
98 Kim TH, Setsompop K, Haldar JP. LORAKS makes better SENSE: phase-constrained partial fourier SENSE reconstruction without phase calibration. Magn Reson Med 2017;77:1021-1035   DOI
99 Wang S, Su Z, Ying L, et al. Accelerating magnetic resonance imaging via deep learning. Proc IEEE Int Symp Biomed Imaging 2016;2016:514-517
100 Yang G, Yu S, Dong H, et al. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 2018;37:1310-1321   DOI
101 Yang Y, Sun J, Li H, Xu Z. ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans Pattern Anal Mach Intell 2020;42:521-538   DOI
102 Uecker M, Hohage T, Block KT, Frahm J. Image reconstruction by regularized nonlinear inversion--joint estimation of coil sensitivities and image content. Magn Reson Med 2008;60:674-682   DOI
103 Liang D, Cheng J, Ke Z, Ying L. Deep magnetic resonance image reconstruction: inverse problems meet neural networks. IEEE Signal Process Mag 2020;37:141-151   DOI
104 Yan X, Gore JC, Grissom WA. Self-decoupled radiofrequency coils for magnetic resonance imaging. Nat Commun 2018;9:3481   DOI
105 Lai Z, Qu X, Lu H, et al. Sparse MRI reconstruction using multi-contrast image guided graph representation. Magn Reson Imaging 2017;43:95-104   DOI
106 Liffers A, Quick HH, Herborn CU, Ermert H, Ladd ME. Geometrical optimization of a phased array coil for high-resolution MR imaging of the carotid arteries. Magn Reson Med 2003;50:439-443   DOI
107 Shajan G, Hoffmann J, Budde J, Adriany G, Ugurbil K, Pohmann R. Design and evaluation of an RF front-end for 9.4 T human MRI. Magn Reson Med 2011;66:596-604
108 Gao Y, Mareyam A, Sun Y, et al. A 16-channel AC/DC array coil for anesthetized monkey whole-brain imaging at 7T. Neuroimage 2020;207:116396   DOI
109 Reiss-Zimmermann M, Gutberlet M, Kostler H, Fritzsch D, Hoffmann KT. Improvement of SNR and acquisition acceleration using a 32-channel head coil compared to a 12-channel head coil at 3T. Acta Radiol 2013;54:702-708   DOI
110 Han H, Song AW, Truong TK. Integrated parallel reception, excitation, and shimming (iPRES). Magn Reson Med 2013;70:241-247   DOI
111 Ouhlous M, Moelker A, Flick HJ, et al. Quadrature coil design for high-resolution carotid artery imaging scores better than a dual phased-array coil design with the same volume coverage. J Magn Reson Imaging 2007;25:1079-1084   DOI
112 Balu N, Yarnykh VL, Scholnick J, Chu B, Yuan C, Hayes C. Improvements in carotid plaque imaging using a new eight-element phased array coil at 3T. J Magn Reson Imaging 2009;30:1209-1214   DOI
113 Avdievich NI, Solomakha G, Ruhm L, Scheffler K, Henning A. Decoupling of folded-end dipole antenna elements of a 9.4 T human head array using an RF shield. NMR Biomed 2020;33:e4351   DOI
114 Tate Q, Kim SE, Treiman G, Parker DL, Hadley JR. Increased vessel depiction of the carotid bifurcation with a specialized 16-channel phased array coil at 3T. Magn Reson Med 2013;69:1486-1493   DOI
115 Saba L, Yuan C, Hatsukami TS, et al. Carotid artery wall imaging: perspective and guidelines from the asnr vessel wall imaging study group and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2018;39:E9-E31   DOI
116 Li Y, Chen Q, Wei Z, et al. One-stop MR neurovascular vessel wall imaging with a 48-channel coil system at 3 T. IEEE Trans Biomed Eng 2020;67:2317-2327   DOI
117 Lin M, Xin L, Min C, Haibin S, Jianping L. Chinese guideline for standard utilization of imaging for cerebrovascular diseases. Chin J Radiol 2019;53:916-940
118 Mandell DM, Mossa-Basha M, Qiao Y, et al. Intracranial vessel wall MRI: principles and expert consensus recommendations of the American Society of Neuroradiology. AJNR Am J Neuroradiol 2017;38:218-229   DOI
119 Zhao X, Hippe DS, Li R, et al. Prevalence and characteristics of carotid artery high-risk atherosclerotic plaques in Chinese patients with cerebrovascular symptoms: a Chinese atherosclerosis risk evaluation II study. J Am Heart Assoc 2017;6:e005831   DOI
120 Hu X, Li Y, Zhang L, Zhang X, Liu X, Chung YC. A 32-channel coil system for MR vessel wall imaging of intracranial and extracranial arteries at 3T. Magn Reson Imaging 2017;36:86-92   DOI
121 Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225   DOI
122 Li Y, Xie Z, Pang Y, Vigneron D, Zhang X. ICE decoupling technique for RF coil array designs. Med Phys 2011;38:4086-4093   DOI
123 Lee D, Yoo J, Ye JC. Deep residual learning for compressed sensing MRI. Proc IEEE Int Symp Biomed Imaging 2017:15-18
124 Kwon K, Kim D, Park H. A parallel MR imaging method using multilayer perceptron. Med Phys 2017;44:6209-6224   DOI
125 Wang S, Xiao T, Liu Q, Zheng H. Deep learning for fast MR imaging: a review for learning reconstruction from incomplete k-space data. Biomed Signal Process Control 2021;68:102579   DOI
126 Wang Y, Zhao X, Liu L, et al. Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: the Chinese intracranial atherosclerosis (CICAS) study. Stroke 2014;45:663-669   DOI
127 World Health Organization. The top 10 causes of death. World Health Organization; 2020
128 Qiao Y, Steinman DA, Qin Q, et al. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla. J Magn Reson Imaging 2011;34:22-30   DOI
129 Liu Y, Zhan Z, Cai JF, Guo D, Chen Z, Qu X. Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging. IEEE Trans Med Imaging 2016;35:2130-2140   DOI
130 Saib G, Gras V, Mauconduit F, et al. Time-of-flight angiography at 7T using TONE double spokes with parallel transmission. Magn Reson Imaging 2019;61:104-115   DOI
131 Liu Y, Breger R, Foo T, Hollrich T, Yanny L, Blechinger J. High resolution contrast-enhanced magnetic resonance angiography of carotid arteries using an array coil on a cardiovascular scanner. In Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2000;4:2864-2865
132 Li N, Zheng H, Xu G, et al. Simultaneous head and spine MR imaging in children using a dedicated multichannel receiver system at 3T. IEEE Trans Biomed Eng 2021;68:3659-3670   DOI
133 Lindenholz A, van der Kolk AG, Zwanenburg JJM, Hendrikse J. The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology 2018;286:12-28   DOI
134 Cheng J, Jia S, Ying L, et al. Improved parallel image reconstruction using feature refinement. Magn Reson Med 2018;80:211-223   DOI
135 Chen Q, Xie G, Luo C, et al. A dedicated 36-channel receive array for fetal MRI at 3T. IEEE Trans Med Imaging 2018;37:2290-2297   DOI
136 Gruber B, Froeling M, Leiner T, Klomp DWJ. RF coils: a practical guide for nonphysicists. J Magn Reson Imaging 2018;48:590-604   DOI
137 Ritz K, Denswil NP, Stam OC, van Lieshout JJ, Daemen MJ. Cause and mechanisms of intracranial atherosclerosis. Circulation 2014;130:1407-1414   DOI
138 Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 2012;67:1210-1224   DOI
139 Bookwalter CA, Griswold MA, Sunshine JL, Duerk JL. Analysis of signal-to-noise behavior in Cartesian continuous sampling sequences: predictions and experimental validation of opportunities for improved image SNR. Magn Reson Med 2007;58:819-824   DOI
140 Vasanawala SS, Lustig M. Advances in pediatric body MRI. Pediatr Radiol 2011;41 Suppl 2:549-554   DOI
141 Papoutsis K, Li L, Near J, Payne S, Jezzard P. A purpose-built neck coil for black-blood DANTE-prepared carotid artery imaging at 7T. Magn Reson Imaging 2017;40:53-61   DOI