Browse > Article
http://dx.doi.org/10.13104/imri.2021.25.1.23

Differentiation between Glioblastoma and Solitary Metastasis: Morphologic Assessment by Conventional Brain MR Imaging and Diffusion-Weighted Imaging  

Jung, Bo Young (Department of Radiology, Dongguk University Ilsan Hospital)
Lee, Eun Ja (Department of Radiology, Dongguk University Ilsan Hospital)
Bae, Jong Myon (Department of Preventive Medicine, Jeju National University School of Medicine)
Choi, Young Jae (Department of Radiology, Dongguk University Ilsan Hospital)
Lee, Eun Kyoung (Department of Radiology, Dongguk University Ilsan Hospital)
Kim, Dae Bong (Department of Radiology, Dongguk University Ilsan Hospital)
Publication Information
Investigative Magnetic Resonance Imaging / v.25, no.1, 2021 , pp. 23-34 More about this Journal
Abstract
Purpose: Differentiating between glioblastoma and solitary metastasis is very important for the planning of further workup and treatment. We assessed the ability of various morphological parameters using conventional MRI and diffusion-based techniques to distinguish between glioblastomas and solitary metastases in tumoral and peritumoral regions. Materials and Methods: We included 38 patients with solitary brain tumors (21 glioblastomas, 17 solitary metastases). To find out if there were differences in the morphologic parameters of enhancing tumors, we analyzed their shape, margins, and enhancement patterns on postcontrast T1-weighted images. During analyses of peritumoral regions, we assessed the extent of peritumoral non-enhancing lesion on T2- and postcontrast T1-weighted images. We also aimed to detect peritumoral neoplastic cell infiltration by visual assessment of T2-weighted and diffusion-based images, including DWI, ADC maps, and exponential DWI, and evaluated which sequence depicted peritumoral neoplastic cell infiltration most clearly. Results: The shapes, margins, and enhancement patterns of tumors all significantly differentiated glioblastomas from metastases. Glioblastomas had an irregular shape, ill-defined margins, and a heterogeneous enhancement pattern; on the other hand, metastases had an ovoid or round shape, well-defined margins, and homogeneous enhancement. Metastases had significantly more extensive peritumoral T2 high signal intensity than glioblastomas had. In visual assessment of peritumoral neoplastic cell infiltration using T2-weighted and diffusion-based images, all sequences differed significantly between the two groups. Exponential DWI had the highest sensitivity for the diagnosis of both glioblastoma (100%) and metastasis (70.6%). A combination of exponential DWI and ADC maps was optimal for the depiction of peritumoral neoplastic cell infiltration in glioblastoma. Conclusion: In the differentiation of glioblastoma from solitary metastatic lesions, visual morphologic assessment of tumoral and peritumoral regions using conventional MRI and diffusion-based techniques can also offer diagnostic information.
Keywords
Glioblastoma; Intracranial metastasis; MR imaging; Diffusion weighted imaging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97-109   DOI
2 Lee EJ, terBrugge K, Mikulis D, et al. Diagnostic value of peritumoral minimum apparent diffusion coefficient for differentiation of glioblastoma multiforme from solitary metastatic lesions. AJR Am J Roentgenol 2011;196:71-76   DOI
3 Law M, Cha S, Knopp EA, Johnson G, Arnett J, Litt AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 2002;222:715-721   DOI
4 Furnari FB, Fenton T, Bachoo RM, et al. Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 2007;21:2683-2710   DOI
5 Cha S, Lupo JM, Chen MH, et al. Differentiation of glioblastoma multiforme and single brain metastasis by peak height and percentage of signal intensity recovery derived from dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 2007;28:1078-1084   DOI
6 Chiang IC, Kuo YT, Lu CY, et al. Distinction between highgrade gliomas and solitary metastases using peritumoral 3-T magnetic resonance spectroscopy, diffusion, and perfusion imagings. Neuroradiology 2004;46:619-627   DOI
7 Opstad KS, Murphy MM, Wilkins PR, Bell BA, Griffiths JR, Howe FA. Differentiation of metastases from high-grade gliomas using short echo time 1H spectroscopy. J Magn Reson Imaging 2004;20:187-192   DOI
8 Tang YM, Ngai S, Stuckey S. The solitary enhancing cerebral lesion: can FLAIR aid the differentiation between glioma and metastasis? AJNR Am J Neuroradiol 2006;27:609-611
9 Ishimaru H, Morikawa M, Iwanaga S, Kaminogo M, Ochi M, Hayashi K. Differentiation between high-grade glioma and metastatic brain tumor using single-voxel proton MR spectroscopy. Eur Radiol 2001;11:1784-1791   DOI
10 Cho SK, Na DG, Ryoo JW, et al. Perfusion MR imaging: clinical utility for the differential diagnosis of various brain tumors. Korean J Radiol 2002;3:171-179   DOI
11 Strugar J, Rothbart D, Harrington W, Criscuolo GR. Vascular permeability factor in brain metastases: correlation with vasogenic brain edema and tumor angiogenesis. J Neurosurg 1994;81:560-566   DOI
12 Lee EJ, Ahn KJ, Lee EK, Lee YS, Kim DB. Potential role of advanced MRI techniques for the peritumoural region in differentiating glioblastoma multiforme and solitary metastatic lesions. Clin Radiol 2013;68:e689-697   DOI
13 Lu S, Ahn D, Johnson G, Cha S. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol 2003;24:937-941
14 Kelly PJ, Daumas-Duport C, Kispert DB, Kall BA, Scheithauer BW, Illig JJ. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 1987;66:865-874   DOI
15 Kelly PJ, Daumas-Duport C, Scheithauer BW, Kall BA, Kispert DB. Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 1987;62:450-459   DOI
16 Al-Okaili RN, Krejza J, Wang S, Woo JH, Melhem ER. Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics 2006;26 Suppl 1:S173-189   DOI
17 Maurer MH, Synowitz M, Badakshi H, et al. Glioblastoma multiforme versus solitary supratentorial brain metastasis: differentiation based on morphology and magnetic resonance signal characteristics. Rofo 2013;185:235-240
18 Park YW, Ahn SJ. Comparison of contrast-enhanced T2 FLAIR and 3D T1 black-blood fast spin-echo for detection of leptomeningeal metastases. Investig Magn Reson Imaging 2018;22:86-93   DOI
19 Burger PC, Vogel FS, Green SB, Strike TA. Glioblastoma multiforme and anaplastic astrocytoma. Pathologic criteria and prognostic implications. Cancer 1985;56:1106-1111   DOI
20 Oh J, Cha S, Aiken AH, et al. Quantitative apparent diffusion coefficients and T2 relaxation times in characterizing contrast enhancing brain tumors and regions of peritumoral edema. J Magn Reson Imaging 2005;21:701-708   DOI
21 Smirniotopoulos JG, Murphy FM, Rushing EJ, Rees JH, Schroeder JW. Patterns of contrast enhancement in the brain and meninges. Radiographics 2007;27:525-551   DOI
22 Kunimatsu A, Kunimatsu N, Kamiya K, Watadani T, Mori H, Abe O. Comparison between glioblastoma and primary central nervous system lymphoma using MR image-based texture analysis. Magn Reson Med Sci 2018;17:50-57   DOI
23 VandenBerg SR. Current diagnostic concepts of astrocytic tumors. J Neuropathol Exp Neurol 1992;51:644-657   DOI
24 Fink KR, Fink JR. Imaging of brain metastases. Surg Neurol Int 2013;4:S209-219   DOI
25 Takei H, Rouah E, Ishida Y. Brain metastasis: clinical characteristics, pathological findings and molecular subtyping for therapeutic implications. Brain Tumor Pathol 2016;33:1-12   DOI
26 Provenzale JM, Engelter ST, Petrella JR, Smith JS, MacFall JR. Use of MR exponential diffusion-weighted images to eradicate T2 "shine-through" effect. AJR Am J Roentgenol 1999;172:537-539   DOI
27 Engelter ST, Provenzale JM, Petrella JR, Alberts MJ, DeLong DM, MacFall JR. Use of exponential diffusion imaging to determine the age of ischemic infarcts. J Neuroimaging 2001;11:141-147   DOI
28 Penn RD. Cerebral edema and neurological function: CT, evoked responses, and clinical examination. Adv Neurol 1980;28:383-394
29 Calli C, Kitis O, Yunten N, Yurtseven T, Islekel S, Akalin T. Perfusion and diffusion MR imaging in enhancing malignant cerebral tumors. Eur J Radiol 2006;58:394-403   DOI
30 Sunwoo L, Yun TJ, You SH, et al. Differentiation of glioblastoma from brain metastasis: qualitative and quantitative analysis using arterial spin labeling MR imaging. PLoS One 2016;11:e0166662   DOI
31 Bauer AH, Erly W, Moser FG, Maya M, Nael K. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion. Neuroradiology 2015;57:697-703   DOI
32 Kwon YW, Moon WJ, Park M, et al. Dynamic susceptibility contrast (DSC) perfusion MR in the prediction of long-term survival of glioblastomas (GBM): correlation with MGMT promoter methylation and 1p/19q deletions. Investig Magn Reson Imaging 2018;22:158-167   DOI
33 Smits M, van den Bent MJ. Imaging correlates of adult glioma genotypes. Radiology 2017;284:316-331   DOI
34 Yamashita K, Hiwatashi A, Togao O, et al. MR imaging-based analysis of glioblastoma multiforme: estimation of IDH1 mutation status. AJNR Am J Neuroradiol 2016;37:58-65   DOI