Browse > Article
http://dx.doi.org/10.13104/imri.2020.24.3.95

A Review on the RF Coil Designs and Trends for Ultra High Field Magnetic Resonance Imaging  

Hernandez, Daniel (Department of Biomedical Engineering, Gachon University)
Kim, Kyoung-Nam (Department of Biomedical Engineering, Gachon University)
Publication Information
Investigative Magnetic Resonance Imaging / v.24, no.3, 2020 , pp. 95-122 More about this Journal
Abstract
In this article, we evaluated the performance of radiofrequency (RF) coils in terms of the signal-to-noise ratio (S/N) and homogeneity of magnetic resonance images when used for ultrahigh-frequency (UHF) 7T magnetic resonance imaging (MRI). High-quality MRI can be obtained when these two basic requirements are met. However, because of the dielectric effect, 7T magnetic resonance imaging still produces essentially a non-uniform magnetic flux (|B1|) density distribution. In general, heterogeneous and homogeneous RF coils may be designed using electromagnetic (EM) modeling. Heterogeneous coils, which are surface coils, are used in consideration of scalability in the |B1| region with a high S/N as multichannel loop coils rather than selecting a single loop. Loop coils are considered state of the art for their simplicity yet effective |B1|-field distribution and intensity. In addition, combining multiple loop coils allows phase arrays (PA). PA coils have gained great interest for use in receiving signals because of parallel imaging (PI) techniques, such as sensitivity encoding (SENSE) and generalized autocalibrating partial parallel acquisition (GRAPPA), which drastically reduce the acquisition time. With the introduction of a parallel transmit coil (pTx) system, a form of transceiver loop arrays has also been proposed. In this article, we discussed the applications and proposed designs of loop coils. RF homogeneous coils for volume imaging include Alderman-Grant resonators, birdcage coils, saddle coils, traveling wave coils, transmission line arrays, composite right-/left-handed arrays, and fusion coils. In this article, we also discussed the basic operation, design, and applications of these coils.
Keywords
Radiofrequency coil; Magnetic resonance imaging; Magnetic flux density; Homogeneity;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 COMSOL multiphysics. https://www.comsol.com. COMSOL AB, Stockholm, Sweden. Accessed February 7, 2020
2 Feko electromagnetic simulation software. https://altairhyperworks.com/product/Feko. Accessed February 7, 2020
3 Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 1996;41:2231-2249   DOI
4 Weyers D, McKinnon G, Becerra R, Mathew S, Edwards M. Shading reduction at 3.0 T using an elliptical drive. Proc Int Soc Magn Reson Med 2006;14:2023
5 Nistler J, Diehl D, Renz W, Eberler L. Homogeneity improvement using a 2 port birdcage coil. Proc Int Soc Magn Reson Med 2007;15:1063
6 Hernandez D, Cho MH, Lee SY. Iterative multi-channel radio frequency pulse calibration with improving B1 field uniformity in high field MRI. Biomed Eng Online 2015;14:15   DOI
7 Jia H, Wang C, Wang G, et al. Impact of 3.0 T cardiac MR imaging using dual-source parallel radiofrequency transmission with patient-adaptive B1 shimming. PLoS One 2013;8:e66946   DOI
8 Ibrahim TS, Lee R, Baertlein BA, Abduljalil AM, Zhu H, Robitaille PM. Effect of RF coil excitation on field inhomogeneity at ultra high fields: a field optimized TEM resonator. Magn Reson Imaging 2001;19:1339-1347   DOI
9 Collins CM, Liu W, Swift BJ, Smith MB. Combination of optimized transmit arrays and some receive array reconstruction methods can yield homogeneous images at very high frequencies. Magn Reson Med 2005;54:1327-1332   DOI
10 Abraham R, Ibrahim TS. Proposed radiofrequency phasedarray excitation scheme for homogenous and localized 7-Tesla whole-body imaging based on full-wave numerical simulations. Magn Reson Med 2007;57:235-242   DOI
11 Van den Berg CA, Van den Bergen B, Kroeze H, Bartels LW, Lagendijk JJ. Simultaneous B1+ homogenisation and SAR hotspot suppression by a phased array MR transmit coil. Proc Int Soc Magn Reson Med 2006;14:2039
12 Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR phased array. Magn Reson Med 1990;16:192-225   DOI
13 Kim DE, Park YM, Perez M, Hernandez D, Lee JH, Lee SY. Retrospective 3D modeling of RF coils using a 3D tracker for EM simulation. Concepts Magn Reson Part B 2013;43B:126-132
14 Perez M, Hernandez D, Michel E, Cho MH, Lee SY. A tool box to evaluate the phased array coil performance using retrospective 3D coil modeling. J Korean Soc Magn Reson Med 2014;18:107-119   DOI
15 Hernandez D, Kim KN. Computational analysis for the combination of inductive coupled wireless coils and high permittivity materials to improve B1 field for rhesus monkey MRI. Appl Comput Electrom 2019;34:1457-1460
16 Wolf S, Diehl D, Gebhardt M, Mallow J, Speck O. SAR simulations for high-field MRI: how much detail, effort, and accuracy is needed? Magn Reson Med 2013;69:1157-1168   DOI
17 Wang Z, Lin JC, Mao W, Liu W, Smith MB, Collins CM. SAR and temperature: simulations and comparison to regulatory limits for MRI. J Magn Reson Imaging 2007;26:437-441   DOI
18 Fiedler TM, Ladd ME, Bitz AK. SAR Simulations & Safety. Neuroimage 2018;168:33-58   DOI
19 Wu X, Zhang X, Tian J, et al. Comparison of RF body coils for MRI at 3 T: a simulation study using parallel transmission on various anatomical targets. NMR Biomed 2015;28:1332-1344   DOI
20 Giovannetti G, Flori A, De Marchi D, et al. Simulation, design, and test of an elliptical surface coil for magnetic resonance imaging and spectroscopy. Concepts Magn Reson Part B 2017;47B:e21361   DOI
21 Yan X, Gore JC, Grissom WA. Self-decoupled radiofrequency coils for magnetic resonance imaging. Nat Commun 2018;9:3481   DOI
22 Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962   DOI
23 Stara R, Fontana N, Alecci M, et al. RF coil design for low and high field MRI: numerical methods and measurements. In 2011 IEEE Nuclear Science Symposium Conference Record, 2011:3465-3469
24 Haase A, Odoj F, Von Kienlin M, et al. NMR probeheads for in-vivo applications. Concept Magn Reson 2000;12:361-388   DOI
25 Hayes CE, Edelstein WA, Schenck JF, Mueller OM, Eash M. An efficient, highly homogeneous radiofrequency coil for whole-body NMR imaging at 1.5 T. J Magn Reson 1985;63:622-628   DOI
26 Edelstein WA, Glover GH, Hardy CJ, Redington RW. The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 1986;3:604-618   DOI
27 Giovannetti G. Comparison between circular and square loops for low-frequency magnetic resonance applications: theoretical performance estimation. Concepts Magn Reson Part B 2016;46B:146-155   DOI
28 Fenn AJ, Temme DH, Delaney WP, Courtney WE. The development of phased-array radar technology. Lincoln Lab J 2000;12:321-340
29 Schmitt M, Potthast A, Sosnovik DE, et al. A 128-channel receive-only cardiac coil for highly accelerated cardiac MRI at 3 Tesla. Magn Reson Med 2008;59:1431-1439   DOI
30 Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999;42:952-962   DOI
31 Sodickson DK, Griswold MA, Jakob PM. SMASH imaging. Magn Reson Imaging Clin N Am 1999;7:237-254   DOI
32 Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002;47:1202-1210   DOI
33 Wiesinger F, Van de Moortele PF, Adriany G, De Zanche N, Ugurbil K, Pruessmann KP. Parallel imaging performance as a function of field strength--an experimental investigation using electrodynamic scaling. Magn Reson Med 2004;52:953-964   DOI
34 Perez M, Hernandez D, Michel E, Cho MH, Lee SY. A tool box to evaluate the phased array coil performance using retrospective 3D coil modeling. J Korean Soc Mag Reson Med 2014;18:107-119   DOI
35 Kim KN, Hernandez D, Seo JH, et al. Quantitative assessment of phased array coils with different numbers of receiving channels in terms of signal-to-noise ratio and spatial noise variation in magnetic resonance imaging. PLoS One 2019;14:e0219407   DOI
36 Kim KN, Ryu Y, Seo JH, Kim YB. Magnetic field sensitivity at 7-T using dual-helmholtz transmit-only coil and 12-channel receive-only bended coil. Scanning 2016;38:515-524   DOI
37 Giovannetti G, Landini L, Santarelli MF, Positano V. A fast and accurate simulator for the design of birdcage coils in MRI. MAGMA 2002;15:36-44   DOI
38 Chen CN, Hoult DI, Sank VJ. Quadrature detection coils-a further $\sqrt{2}$ improvement in sensitivity. J Magn Reson 1983;54:324-327   DOI
39 Vincent DE, Wang T, Magyar TAK, Jacob PI, Buist R, Martin M. Birdcage volume coils and magnetic resonance imaging: a simple experiment for students. J Biol Eng 2017;11:41   DOI
40 Vaughan JT, Adriany G, Snyder CJ, et al. Efficient highfrequency body coil for high-field MRI. Magn Reson Med 2004;52:851-859   DOI
41 Park JS, Kim J, Lee JO, et al. A new 3.0 T hybrid-spiralbirdcage (HSB) coil for improved homogeneity along z-axis. Proc Intl Soc Mag Reason Med 2000;8:1393
42 Lee RF, Giaquinto RO, Hardy CJ. Coupling and decoupling theory and its application to the MRI phased array. Magn Reson Med 2002;48:203-213   DOI
43 Vaughan JT, Hetherington HP, Otu JO, Pan JW, Pohost GM. High frequency volume coils for clinical NMR imaging and spectroscopy. Magn Reson Med 1994;32:206-218   DOI
44 Giovannetti G. Birdcage coils: Equivalent capacitance and equivalent inductance. Concepts Magn Reson Part B 2014;44B:32-38   DOI
45 Kim KN. Homogeneous and heterogeneous resonators in ultrahigh-field MRI. Doctoral dissertation, 2011
46 Kim KN, Chung ST, Park BS, Shin YM, Kwak JS, Cho JW. Analysis of endcap effect for MRI birdcage RF coil by FDTD method. J Korean Soc Magn Reson Med 2003;7:137-143
47 Salmon CEG, Vidoto ELG, Martins MJ, Tannus A. Optimization of saddle coils for magnetic resonance imaging. Braz J Phys 2006;36:4-8   DOI
48 Kim KN, Seo JH, Han SD, Heo P, Im GH, Lee JH. Development of double-layer coupled coil for improving S/N in 7 T small-animal MRI. Scanning 2015;37:361-371   DOI
49 Zhang B, Sodickson DK, Lattanzi R, Duan Q, Stoeckel B, Wiggins GC. Whole body traveling wave magnetic resonance imaging at high field strength: homogeneity, efficiency, and energy deposition as compared with traditional excitation mechanisms. Magn Reson Med 2012;67:1183-1193   DOI
50 Brunner DO, De Zanche N, Paska J, Frohlich J, Pruessmann KP. Traveling wave MR on a whole-body system. In Proceedings of the 16th Annual Meeting of ISMRM, 2008:434
51 Zhang B, Wiggins GC, Duan Q, Lattanzi R, Sodickson DK. Whole-body traveling-wave imaging at 7T: Simulation and early in-vivo experiment. In Proceedings of the 17th Annual Meeting of ISMRM, 2009:498
52 Seo JH, Han SD, Kim KN. Investigation of the B1 field distribution and RF power deposition in a birdcage coil as functions of the number of coil legs at 4.7 T, 7.0 T, and 11.7 T. J Korean Phys Soc 2015;66:1822-1826   DOI
53 Brunner DO, De Zanche N, Frohlich J, Paska J, Pruessmann KP. Travelling-wave nuclear magnetic resonance. Nature 2009;457:994-998   DOI
54 KS OK, Li JLW, Xu ZX, Amo SB. A dual-feed circularlypolarized traveling-wave array antenna. In 2014 Asia- Pacific Microwave Conference, 2014:1417-1419
55 Yan X, Gore JC, Grissom WA. Traveling-wave meets standing-wave: a simulation study using pair-oftransverse-dipole-ring (PTDR) coils for adjustable longitudinal coverage in ultra-high field MRI. Concepts Magn Reson Part B Magn Reson Eng 2018;48B
56 Elabyad IA, Herrmann T, Bernarding J, Omar A. Combination of travelling wave approach and microstrip transceiver coil arrays for MRI at 7T. In 2011 IEEE MTT-S International Microwave Symposium, 2011:1-4
57 Andreychenko A, Kroeze H, Klomp DW, Lagendijk JJ, Luijten PR, van den Berg CA. Coaxial waveguide for travelling wave MRI at ultrahigh fields. Magn Reson Med 2013;70:875-884   DOI
58 Vazquez F, Martin R, Marrufo O, Rodriguez AO. Travelling wave magnetic resonance imaging at 3 T. J Appl Phys 2013;114:064906   DOI
59 Elabyad IA, Omar A, Herrmann T, Mallow J, Bernarding J. Travelling wave approach for high field magnetic resonance imaging. 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), 2010:5702899
60 Andreychenko A, Klomp DW, van den Bergen B, et al. Effective delivery of the traveling wave to distant locations in the body at 7T. In Proceedings of the 17th Annual Meeting of ISMRM, 2009:501
61 Mallow J, Herrmann T, Kim KN, et al. Ultra-high field MRI for primate imaging using the travelling-wave concept. MAGMA 2013;26:389-400   DOI
62 Herrmann T, Mallow J, Plaumann M, et al. The travellingwave primate system: a new solution for magnetic resonance imaging of macaque monkeys at 7 Tesla ultrahigh field. PLoS One 2015;10:e0129371   DOI
63 Vazquez F, Marrufo O, Martin R, Solis S, Rodriguez AO. Transmission of travelling-wave with a simple waveguide for rodents MRI at 9.4 T. arXiv preprint arXiv:1511.02949, 2015
64 Erturk MA, Raaijmakers AJ, Adriany G, Ugurbil K, Metzger GJ. A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI. Magn Reson Med 2017;77:884-894   DOI
65 Raaijmakers AJ, Luijten PR, van den Berg CA. Dipole antennas for ultrahigh-field body imaging: a comparison with loop coils. NMR Biomed 2016;29:1122-1130   DOI
66 Wu B, Wang C, Kelley DA, et al. Shielded microstrip array for 7T human MR imaging. IEEE Trans Med Imaging 2010;29:179-184   DOI
67 Alon L, Lattanzi R, Lakshmanan K, et al. Transverse slot antennas for high field MRI. Magn Reson Med 2018;80:1233-1242   DOI
68 Das SK. Antenna and wave propagation. Tata McGraw-Hill Education, 2013
69 Kim HJ, Heo P, Han SD, Kim D, Song H, Kim KN. Improvements in radio-frequency transmission for ultrahigh field magnetic resonance imaging through a bilateral monopole antenna. Electromagnetics 2018;38:283-290   DOI
70 Akin B, Ozen AC. Microstrip array insert for head coils: towards layer fMRI at high fields. In ISMRM 27th Annual Meeting & Exhibition, 2019:0371
71 Zhang X, Ugurbil K, Chen W. Microstrip RF surface coil design for extremely high-field MRI and spectroscopy. Magn Reson Med 2001;46:443-450   DOI
72 Rennings A, Mosig J, Bahr A, Caloz C, Ladd ME, Erni D. A CRLH metamaterial based RF coil element for magnetic resonance imaging at 7 Tesla. In Proceedings of the 3rd European Conference on Antennas and Propagation (EuCAP '09), 2009:3231-3234
73 Erni D, Liebig T, Rennings A, Koster NH, Frohlich J. Highly adaptive RF excitation scheme based on conformal resonant CRLH metamaterial ring antennas for 7-Tesla traveling-wave magnetic resonance imaging. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011:554-558
74 Mosig J, Bahr A, Bolz T, Rennings A. Design and characteristics of a metamaterial transmit/receive coil element for 7 Tesla MRI. In World Congress on Medical Physics and Biomedical Engineering, 2009:173-176
75 Hernandez D, Seo JH, Kim KN. Linear array arrangement using composite right-/left-handed transmission lines for magnetic resonance imaging. Int J Imaging Syst Technol 2020;30:216-223   DOI
76 Hernandez D, Seo J-H, Kim K-N. Comparisons for microstrip and CRLH transmission lines array coils at 7T. ISMRM 27th Annual Meeting & Exhibition, 2019:1515
77 Svejda JT, Rennings A, Erni D. A metamaterial based dualresonant coil element for combined sodium/hydrogen MRI at 7-Tesla. tm - Technisches Messen 2016;84:2-12   DOI
78 Svejda JT, Erni D, Rennings A. An intrinsically double tuned half-wavelength CRLH resonator for combined 23Na/1H MRI. MAGMA 2013;26:346-348
79 Lim SI, Woo CW, Kim ST, Choe BY, Woo DC. Radiofrequency coil design for in vivo sodium magnetic resonance imaging of mouse kidney at 9.4 T. Investig Magn Reson Imaging. 2018;22:65-70   DOI
80 Hu R, Kleimaier D, Malzacher M, Hoesl MAU, Paschke NK, Schad LR. X-nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2020;51:355-376   DOI
81 Han SD, Heo P, Kim HJ, et al. Double-layered dual-tuned RF coil using frequency-selectable PIN-diode control at 7-T MRI. Concepts Magn Reson Part B 2017;47B:e21363   DOI
82 Gruber B, Froeling M, Leiner T, Klomp DWJ. RF coils: a practical guide for nonphysicists. J Magn Reson Imaging 2018;48:590-604   DOI
83 Lee SH, Barg JS, Yeo SJ, Lee SK. High-resolution numerical simulation of respiration-induced dynamic B0 shift in the head in high-field MRI. Investig Magn Reson Imaging 2019;23:38-45   DOI
84 Paska J, Cloos MA, Wiggins GC. A rigid, stand-off hybrid dipole, and birdcage coil array for 7 T body imaging. Magn Reson Med 2018;80:822-832   DOI
85 Elabyad IA, Herrmann T, Bernarding J, Omar A. Combination of travelling wave approach and microstrip transceiver coil arrays for MRI at 7T. In 2011 IEEE MTT-S International Microwave Symposium, 2011:1-4
86 Zaaraoui W, Deloire M, Merle M, et al. Monitoring demyelination and remyelination by magnetization transfer imaging in the mouse brain at 9.4 T. MAGMA 2008;21:357-362   DOI
87 Klomp DWJ, van der Graaf M, Willemsen MAAP, van der Meulen YM, Kentgens APM, Heerschap A. Transmit/receive headcoil for optimal 1H MR spectroscopy of the brain in paediatric patients at 3T. MAGMA 2004;17:1-4   DOI
88 Mansfield P, Grannell PK. NMR 'diffraction' in solids? J Phys C Solid State Phys 1973;6:L422-427   DOI
89 Wang J, Mao W, Qiu M, Smith MB, Constable RT. Factors influencing flip angle mapping in MRI: RF pulse shape, slice-select gradients, off-resonance excitation, and B0 inhomogeneities. Magn Reson Med 2006;56:463-468   DOI
90 Ernst RR, Anderson WA. Applications of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instrum 1966;37:93-102   DOI
91 Redpath TW, Wiggins CJ. Estimating achievable signalto-noise ratios of MRI transmit-receive coils from radiofrequency power measurements: applications in quality control. Phys Med Biol 2000;45:217-227   DOI
92 Kumar A, Edelstein WA, Bottomley PA. Noise figure limits for circular loop MR coils. Magn Reson Med 2009;61:1201-1209   DOI
93 Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 2007;26:375-385   DOI
94 Springer E, Dymerska B, Cardoso PL, et al. Comparison of routine brain imaging at 3 T and 7 T. Invest Radiol 2016;51:469-482   DOI
95 Kaufman L, Kramer DM, Crooks LE, Ortendahl DA. Measuring signal-to-noise ratios in MR imaging. Radiology 1989;173:265-267   DOI
96 Henkelman RM. Erratum: Measurement of signal intensities in the presence of noise in MR images. Med Phys 1986;13:544   DOI
97 Smith NB, Webb A. Introduction to medical imaging-Physics, engineering and clinical applications. Cambridge, UK: Cambridge University Press, 2011
98 Chen CN, Hoult DI, Sank VJ. Quadrature detection coils - A further $\sqrt{2}$ improvement in sensitivity. J Magn Reson 1983;54:324-327   DOI
99 Glover GH, Hayes CE, Pelc NJ, et al. Comparison of linear and circular polarization for magnetic resonance imaging. J Magn Reson 1985;64:255-270   DOI
100 Pradhan S, Bonekamp S, Gillen JS, et al. Comparison of single voxel brain MRS AT 3T and 7T using 32-channel head coils. Magn Reson Imaging 2015;33:1013-1018   DOI
101 Suttie JJ, Delabarre L, Pitcher A, et al. 7 Tesla (T) human cardiovascular magnetic resonance imaging using FLASH and SSFP to assess cardiac function: validation against 1.5 T and 3 T. NMR Biomed 2012;25:27-34   DOI
102 Vaidya MV, Collins CM, Sodickson DK, Brown R, Wiggins GC, Lattanzi R. Dependence of B1+ and B1- field patterns of surface coils on the electrical properties of the sample and the MR operating frequency. Concepts Magn Reson Part B Magn Reson Eng 2016;46:25-40   DOI
103 Jin JM. Electromagnetics in magnetic resonance imaging. IEEE Trans Antennas Propag Mag 1998;40:7-22
104 Collins CM. Electromagnetics in magnetic resonance imaging: physical principles, related applications, and ongoing developments. Morgan & Claypool Publishers, 2016
105 Ibrahim TS, Hue YK, Tang L. Understanding and manipulating the RF fields at high field MRI. NMR Biomed 2009;22:927-936   DOI
106 Hoult DI. The principle of reciprocity in signal strength calculations-a mathematical guide. Concepts Magn Reson 2000;12:173-187   DOI
107 Balanis CA. Advanced engineering electromagnetics. New York: John Wiley & Sons, Inc., 1989:323-326
108 Chunli W, Zhiming B, Jingkui X, Jinxing W. Simulation analysis on quality factor of RF receiving coil for an MRI system. In 2009 Chinese Control and Decision Conference, 2009:4652-4655
109 Collins CM. Numerical field calculations considering the human subject for engineering and safety assurance in MRI. NMR Biomed 2009;22:919-926   DOI
110 Avdievich NI, Oh S, Hetherington HP, Collins CM. Improved homogeneity of the transmit field by simultaneous transmission with phased array and volume coil. J Magn Reson Imaging 2010;32:476-481   DOI
111 Chen X, Steckner M. Electromagnetic computation and modeling in MRI. Med Phys 2017;44:1186-1203   DOI
112 Jean-Jacques D. What are the differences between various EM-simulation numerical methods. www.mwrf.com/. Published November 10, 2014. Accessed February 7, 2020
113 Ansys HFSS software. https://www.ansys.com/Products/Electronics/ANSYS-HFSS. Accessed February 7, 2020
114 SIM4LIFE software, ZMT. https://www.zmt.swiss. Accessed February 7, 2020
115 Ibrahim TS. Analytical approach to the MR signal. Magn Reson Med 2005;54:677-682   DOI