Browse > Article
http://dx.doi.org/10.13104/imri.2020.24.2.67

RF Heating of Implants in MRI: Electromagnetic Analysis and Solutions  

Cho, Youngdae (Department of Biomedical Engineering, Hanyang University)
Yoo, Hyoungsuk (Department of Biomedical Engineering, Hanyang University)
Publication Information
Investigative Magnetic Resonance Imaging / v.24, no.2, 2020 , pp. 67-75 More about this Journal
Abstract
When a patient takes an MRI scan, the patient has a risk of unexpected injuries due to the intensive electromagnetic (EM) field. Among the injuries, the tissue heating by the time-varying EM field is one of the main issues. Since an implanted artificial structure with a conductive material aggravates the heating effect, lots of studies have been conducted to investigate the effect around the implants. In this review article, a mechanism of RF heating around the implants and related studies are comprehensively investigated.
Keywords
Radio Frequency; Heating; Implants; RF coils;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Martin ET, Coman JA, Shellock FG, Pulling CC, Fair R, Jenkins K. Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla. J Am Coll Cardiol 2004;43:1315-1324   DOI
2 Angelone LM, Potthast A, Segonne F, Iwaki S, Belliveau JW, Bonmassar G. Metallic electrodes and leads in simultaneous EEG-MRI: specific absorption rate (SAR) simulation studies. Bioelectromagnetics 2004;25:285-295   DOI
3 Finelli DA, Rezai AR, Ruggieri PM, et al. MR imagingrelated heating of deep brain stimulation electrodes: in vitro study. AJNR Am J Neuroradiol 2002;23:1795-1802
4 Park SM, Kamondetdacha R, Amjad A, Nyenhuis JA. MRI safety: RF-induced heating near straight wires. IEEE T Magn 2005;41:4197-4199   DOI
5 Golombeck MA, Thiele J, Dossel O. Magnetic resonance imaging with implanted neurostimulators: numerical calculation of the induced heating. Biomed Tech (Berl) 2002;47 Suppl 1 Pt 2:660-663   DOI
6 Nguyen UD, Brown JS, Chang IA, Krycia J, Mirotznik MS. Numerical evaluation of heating of the human head due to magnetic resonance imaging. IEEE Trans Biomed Eng 2004;51:1301-1309   DOI
7 Collins CM, Liu W, Wang J, et al. Temperature and SAR calculations for a human head within volume and surface coils at 64 and 300 MHz. J Magn Reson Imaging 2004;19:650-656   DOI
8 Collins CM. Numerical field calculations considering the human subject for engineering and safety assurance in MRI. NMR Biomed 2009;22:919-926   DOI
9 Hand JW. Modelling the interaction of electromagnetic fields (10 MHz-10 GHz) with the human body: methods and applications. Phys Med Biol 2008;53:R243-286   DOI
10 Wang J, Fujiwara O. FDTD computation of temperature rise in the human head for portable telephones. IEEE Trans Microw Theory Tech 1999;47:1528-1534   DOI
11 van Lier AL, Kotte AN, Raaymakers BW, Lagendijk JJ, van den Berg CA. Radiofrequency heating induced by 7T head MRI: thermal assessment using discrete vasculature or Pennes' bioheat equation. J Magn Reson Imaging 2012;35:795-803   DOI
12 Christ A, Kainz W, Hahn EG, et al. The virtual family--development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys Med Biol 2010;55:N23-38   DOI
13 Tagliati M, Jankovic J, Pagan F, et al. Safety of MRI in patients with implanted deep brain stimulation devices. Neuroimage 2009;47 Suppl 2:T53-57   DOI
14 Rezai AR, Finelli D, Nyenhuis JA, et al. Neurostimulation systems for deep brain stimulation: in vitro evaluation of magnetic resonance imaging-related heating at 1.5 tesla. J Magn Reson Imaging 2002;15:241-250   DOI
15 Elwassif MM, Kong Q, Vazquez M, Bikson M. Bioheat transfer model of deep brain stimulation-induced temperature changes. J Neural Eng 2006;3:306-315   DOI
16 Angelone LM, Ahveninen J, Belliveau JW, Bonmassar G. Analysis of the role of lead resistivity in specific absorption rate for deep brain stimulator leads at 3T MRI. IEEE Trans Med Imaging 2010;29:1029-1038   DOI
17 Shrivastava D, Abosch A, Hughes J, et al. Heating induced near deep brain stimulation lead electrodes during magnetic resonance imaging with a 3 T transceive volume head coil. Phys Med Biol 2012;57:5651-5665   DOI
18 Guy AW, Lehmann JF, Stonebridge JB. Therapeutic applications of electromagnetic power. P IEEE 1974;62:55-75   DOI
19 Feng S, Qiang R, Kainz W, Chen J. A technique to evaluate MRI-induced electric fields at the ends of practical implanted lead. IEEE Trans Microw Theory Tech 2015;63:305-313   DOI
20 Golestanirad L, Keil B, Angelone LM, Bonmassar G, Mareyam A, Wald LL. Feasibility of using linearly polarized rotating birdcage transmitters and close-fitting receive arrays in MRI to reduce SAR in the vicinity of deep brain simulation implants. Magn Reson Med 2017;77:1701-1712   DOI
21 Park SM, Kamondetdacha R, Nyenhuis JA. Calculation of MRI-induced heating of an implanted medical lead wire with an electric field transfer function. J Magn Reson Imaging 2007;26:1278-1285   DOI
22 American Society for Testing and Materials International, Designation: ASTM F2119-07, standard test method for evaluation of MR image artifacts from passive implants. West Conshohocken, PA: ASTM International, 2007
23 ASTM F2182-09 Standard test method for measurement of radio frequency induced heating on or near passive implants during magnetic resonance imaging. West Conshohocken, PA: ASTM, 2009
24 Neufeld E, Kuhn S, Szekely G, Kuster N. Measurement, simulation and uncertainty assessment of implant heating during MRI. Phys Med Biol 2009;54:4151-4169   DOI
25 Attaran Ali, Handler WB, Wawrzyn K, Chronik BA. Electric field probe for time-domain monitoring of radio frequency exposure during development and evaluation of MRIconditional medical devices at 3 T. IEEE Trans Antennas Propag 2019;67:1854-1861   DOI
26 Mosallaei H, Sarabandi K. A one-layer ultra-thin metasurface absorber. 2005 IEEE Antennas and Propagation Society International Symposium 2005:615-618
27 Lagovsky BA. Thin wide-band radio absorbing coatings. Proc 12th Int Conf Microw Telecommun Technol 2002:424-425
28 Yang R, Zheng J, Wang Y, Guo R, Kainz W, Chen J. An absorbing radio frequency shield to reduce RF heating induced by deep brain stimulator during 1.5-T MRI. IEEE T Electromagn C 2019;61:1726-1732   DOI
29 Sarto MS, Caneva C, De Rosa IM, Sarasini F, Sarto F, Tamburrano A. Design and realization of transparent absorbing shields for RF EM fields. Proc IEEE Antennas Propag Soc Int Symp 2006:668-671
30 Favazza CP, King DM, Edmonson HA, et al. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation. Med Devices (Auckl) 2014;7:363-370
31 Teeuwisse WM, Brink WM, Haines KN, Webb AG. Simulations of high permittivity materials for 7 T neuroimaging and evaluation of a new barium titanatebased dielectric. Magn Reson Med 2012;67:912-918   DOI
32 Mattei E, Lucano E, Censi F, Angelone LM, Calcagnini G. High dielectric material in MRI: numerical assessment of the reduction of the induced local power on implanted cardiac lead. Conf Proc IEEE Eng Med Biol Soc 2016;2016:2361-2364
33 Brink WM, Webb AG. High permittivity pads reduce specific absorption rate, improve B1 homogeneity, and increase contrast-to-noise ratio for functional cardiac MRI at 3 T. Magn Reson Med 2014;71:1632-1640   DOI
34 Yu Z, Xin X, Collins CM. Potential for high-permittivity materials to reduce local SAR at a pacemaker lead tip during MRI of the head with a body transmit coil at 3 T. Magn Reson Med 2017;78:383-386   DOI
35 Ladd ME, Quick HH. Reduction of resonant RF heating in intravascular catheters using coaxial chokes. Magn Reson Med 2000;43:615-619   DOI
36 Yeung CJ, Karmarkar P, McVeigh ER. Minimizing RF heating of conducting wires in MRI. Magn Reson Med 2007;58:1028-1034   DOI
37 Golestanirad L, Angelone LM, Kirsch J, et al. Reducing RF-induced heating near implanted leads through highdielectric capacitive bleeding of current (CBLOC). IEEE Trans Microw Theory Tech 2019;67:1265-1273   DOI
38 Bottomley PA, Kumar A, Edelstein WA, Allen JM, Karmarkar PV. Designing passive MRI-safe implantable conducting leads with electrodes. Med Phys 2010;37:3828-3843   DOI
39 Das R, Yoo H. Innovative design of implanted medical lead to reduce MRI-induced scattered electric fields. Electron Lett 2013;49:323-324   DOI
40 Das R, Yoo H. RF heating study of a new medical implant lead for 1.5 T, 3 T, and 7 T MRI systems. IEEE T Electromagn C 2017;59:360-366   DOI
41 Shrivastava D, Abosch A, Hanson T, et al. Effect of the extracranial deep brain stimulation lead on radiofrequency heating at 9.4 Tesla (400.2 MHz). J Magn Reson Imaging 2010;32:600-607   DOI
42 Golestanirad L, Angelone LM, Iacono MI, Katnani H, Wald LL, Bonmassar G. Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops. Magn Reson Med 2017;78:1558-1565   DOI
43 Abraham R, Ibrahim TS. Proposed radiofrequency phasedarray excitation scheme for homogenous and localized 7-Tesla whole-body imaging based on full-wave numerical simulations. Magn Reson Med 2007;57:235-242   DOI
44 Eryaman Y, Akin B, Atalar E. Reduction of implant RF heating through modification of transmit coil electric field. Magn Reson Med 2011;65:1305-1313   DOI
45 Corcoles J, Zastrow E, Kuster N. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants. Phys Med Biol 2015;60:7293-7308   DOI
46 Gudino N, Sonmez M, Yao Z, et al. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating. Med Phys 2015;42:359-371   DOI
47 Xin SX, Huang Q, Gao Y, Li B, Xu Y, Chen W. Fetus MRI at 7 T: Shimming strategy and SAR safety implications. IEEE Trans Microw Theory Tech 2013;61:2146-2152   DOI
48 Van den Berg CA, van den Bergen B, Van de Kamer JB, et al. Simultaneous B1 + homogenization and specific absorption rate hotspot suppression using a magnetic resonance phased array transmit coil. Magn Reson Med 2007;57:577-586   DOI
49 van den Bergen B, Van den Berg CA, Bartels LW, Lagendijk JJ. 7 T body MRI: B1 shimming with simultaneous SAR reduction. Phys Med Biol 2007;52:5429-5441   DOI
50 Yoo H, Gopinath A, Vaughan JT. A method to localize RF B(1) field in high-field magnetic resonance imaging systems. IEEE Trans Biomed Eng 2012;59:3365-3371   DOI
51 Carr JJ. Danger in performing MR imaging on women who have tattooed eyeliner or similar types of permanent cosmetic injections. AJR Am J Roentgenol 1995;165:1546-1547   DOI
52 Wagle WA, Smith M. Tattoo-induced skin burn during MR imaging. AJR Am J Roentgenol 2000;174:1795   DOI
53 Franiel T, Schmidt S, Klingebiel R. First-degree burns on MRI due to nonferrous tattoos. AJR Am J Roentgenol 2006;187:W556   DOI
54 Vahlensieck M. Tattoo-related cutaneous inflammation (burn grade I) in a mid-field MR scanner. Eur Radiol 2000;10:197   DOI
55 Ross JR, Matava MJ. Tattoo-induced skin "burn" during magnetic resonance imaging in a professional football player: a case report. Sports Health 2011;3:431-434   DOI
56 Lee SH, Barg JS, Yeo SJ, Lee SK. High-resolution numerical simulation of respiration-induced dynamic B0 shift in the head in high-field MRI. Investing Magn Reson Imaging. Investig Magn Reson Imaging 2019;23:38-45   DOI
57 Dempsey MF, Condon B. Thermal injuries associated with MRI. Clin Radiol 2001;56:457-465   DOI
58 Alsing KK, Johannesen HH, Hvass Hansen R, Dirks M, Olsen O, Serup J. MR scanning, tattoo inks, and risk of thermal burn: an experimental study of iron oxide and organic pigments: effect on temperature and magnetic behavior referenced to chemical analysis. Skin Res Technol 2018;24:278-284   DOI
59 Nakamura T, Fukuda K, Hayakawa K, et al. Mechanism of burn injury during magnetic resonance imaging (MRI)--simple loops can induce heat injury. Front Med Biol Eng 2001;11:117-129   DOI
60 Kim JM, Lee C, Hong SD, Kim JH, Sun K, Oh CH. T1-based MR temperature monitoring with RF field change correction at 7.0T. Investig Magn Reson Imaging 2018;22:218-228   DOI
61 Panych LP, Madore B. The physics of MRI safety. J Magn Reson Imaging 2018;47:28-43   DOI
62 Gangarosa RE, Minnis JE, Nobbe J, Praschan D, Genberg RW. Operational safety issues in MRI. Magn Reson Imaging 1987;5:287-292   DOI
63 Shellock FG, Kanal E. Policies, guidelines, and recommendations for MR imaging safety and patient management. SMRI Safety Committee. J Magn Reson Imaging 1991;1:97-101   DOI
64 Shellock FG, Crues JV. MR procedures: biologic effects, safety, and patient care. Radiology 2004;232:635-652   DOI
65 Bottomley PA, Andrew ER. RF magnetic field penetration, phase shift and power dissipation in biological tissue: implications for NMR imaging. Phys Med Biol 1978;23:630-643   DOI
66 Schaefer DJ. Safety aspects of radiofrequency power deposition in magnetic resonance. Magn Reson Imaging Clin N Am 1998;6:775-789   DOI
67 Formica D, Silvestri S. Biological effects of exposure to magnetic resonance imaging: an overview. Biomed Eng Online 2004;3:11   DOI
68 Schenck JF. Safety of strong, static magnetic fields. J Magn Reson Imaging 2000;12:2-19   DOI
69 IEC 60601-2-33, Medical electrical equipment - Part 2-33: Particular requirements for the safety of magnetic resonance equipment for medical diagnosis. Geneva Switzerland: IEC, 2002
70 C95.1-2005 - IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C95.1-1991
71 Luechinger R, Duru F, Scheidegger MB, Boesiger P, Candinas R. Force and torque effects of a 1.5-Tesla MRI scanner on cardiac pacemakers and ICDs. Pacing Clin Electrophysiol 2001;24:199-205   DOI
72 Davis PL, Crooks L, Arakawa M, McRee R, Kaufman L, Margulis AR. Potential hazards in NMR imaging: heating effects of changing magnetic fields and RF fields on small metallic implants. AJR Am J Roentgenol 1981;137:857-860   DOI
73 Hartnell GG, Spence L, Hughes LA, Cohen MC, Saouaf R, Buff B. Safety of MR imaging in patients who have retained metallic materials after cardiac surgery. AJR Am J Roentgenol 1997;168:1157-1159   DOI
74 Condon B, Hadley DM. Potential MR hazard to patients with metallic heart valves: the Lenz effect. J Magn Reson Imaging 2000;12:171-176   DOI
75 Smith CD, Nyenhuis JA, Kildishev AV. Health effects of induced electrical currents: implications for implants. In Shellock FG, ed. Magnetic resonance: health effects and safety. Boca Raton, FL: CRC Press, 2001:393-413
76 Ruggera PS, Witters DM, von Maltzahn G, Bassen HI. In vitro assessment of tissue heating near metallic medical implants by exposure to pulsed radio frequency diathermy. Phys Med Biol 2003;48:2919-2928   DOI
77 Yeung CJ, Susil RC, Atalar E. RF heating due to conductive wires during MRI depends on the phase distribution of the transmit field. Magn Reson Med 2002;48:1096-1098   DOI
78 Nyenhuis JA, Park SM, Kamondetdacha R, Amjad A, Shellock FS, Rezai AR. MRI and implanted medical devices: basic interactions with an emphasis on heating. IEEE T Device Mat Re 2005;5:467-480   DOI
79 Teissl C, Kremser C, Hochmair ES, Hochmair-Desoyer IJ. Magnetic resonance imaging and cochlear implants: compatibility and safety aspects. J Magn Reson Imaging 1999;9:26-38   DOI
80 Yeung CJ, Atalar E. RF transmit power limit for the barewire loopless catheter antenna. J Magn Reson Imaging 2000;12:86-91   DOI
81 Yeung CJ, Susil RC, Atalar E. RF safety of wires in interventional MRI: using a safety index. Magn Reson Med 2002;47:187-193   DOI
82 Nitz WR, Oppelt A, Renz W, Manke C, Lenhart M, Link J. On the heating of linear conductive structures as guide wires and catheters in interventional MRI. J Magn Reson Imaging 2001;13:105-114   DOI
83 Smith CD, Kildishev AV, Nyenhuis JA, Foster KS, Bourland JD. Interactions of MRI magnetic fields with elongated medical implants. J Appl Phys 2000;87:6188-6190   DOI
84 Achenbach S, Moshage W, Diem B, Bieberle T, Schibgilla V, Bachmann K. Effects of magnetic resonance imaging on cardiac pacemakers and electrodes. Am Heart J 1997;134:467-473   DOI
85 Sommer T, Vahlhaus C, Lauck G, et al. MR imaging and cardiac pacemakers: in-vitro evaluation and in-vivo studies in 51 patients at 0.5 T. Radiology 2000;215:869-879   DOI