Browse > Article

Anatomical Brain Connectivity Map of Korean Children  

Um, Min-Hee (BK21 Project for Medical Science, Yonsei University College of Medicine)
Park, Bum-Hee (BK21 Project for Medical Science, Yonsei University College of Medicine)
Park, Hae-Jeong (BK21 Project for Medical Science, Yonsei University College of Medicine)
Publication Information
Investigative Magnetic Resonance Imaging / v.15, no.2, 2011 , pp. 110-122 More about this Journal
Abstract
Purpose : The purpose of this study is to establish the method generating human brain anatomical connectivity from Korean children and evaluating the network topological properties using small-world network analysis. Materials and Methods : Using diffusion tensor images (DTI) and parcellation maps of structural MRIs acquired from twelve healthy Korean children, we generated a brain structural connectivity matrix for individual. We applied one sample t-test to the connectivity maps to derive a representative anatomical connectivity for the group. By spatially normalizing the white matter bundles of participants into a template standard space, we obtained the anatomical brain network model. Network properties including clustering coefficient, characteristic path length, and global/local efficiency were also calculated. Results : We found that the structural connectivity of Korean children group preserves the small-world properties. The anatomical connectivity map obtained in this study showed that children group had higher intra-hemispheric connectivity than inter-hemispheric connectivity. We also observed that the neural connectivity of the group is high between brain stem and motorsensory areas. Conclusion : We suggested a method to examine the anatomical brain network of Korean children group. The proposed method can be used to evaluate the efficiency of anatomical brain networks in people with disease.
Keywords
Structural connectivity; Small-world network; Korean children connectome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10:186-198   DOI   ScienceOn
2 Sporns O. The human connectome: a complex network. Ann N Y Acad Sci 2011
3 Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 2006;26:63-72   DOI   ScienceOn
4 Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist 2006;12:512-523   DOI   ScienceOn
5 Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A 2001;98:676-682   DOI   ScienceOn
6 Zhang S, Correia S, Laidlaw DH. Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiberclustering method. IEEE Trans Vis Comput Graph 2008;14:1044-1053
7 Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Human Brain Mapping 1999;7:254-266   DOI   ScienceOn
8 Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 2005;54:1377-1386   DOI   ScienceOn
9 He Y, Chen ZJ, Evans AC. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex 2007;17:2407-2419
10 Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett 2001;87:198701
11 Gabriela Kalna DJH. Clustering Coefficients for Weighted Networks. Symposium on Network Analysis in Natural Sciences and Engineering 2006
12 Fransson P, Aden U, Blennow M, Lagercrantz H. The functional architecture of the infant brain as revealed by resting-state FMRI. Cereb Cortex 2011;21:145-154   DOI   ScienceOn
13 Fransson P, Skiold B, Engstrom M, Hallberg B, Mosskin M, Aden U, et al. Spontaneous brain activity in the newborn brain during natural sleep--an fMRI study in infants born at full term. Pediatr Res 2009;66:301-305   DOI   ScienceOn
14 Fransson P, Skiold B, Horsch S, Nordell A, Blennow M, Lagercrantz H, et al. Resting-state networks in the infant brain. Proc Natl Acad Sci U S A 2007;104:15531-15536   DOI   ScienceOn
15 Lin W, Zhu Q, Gao W, Chen Y, Toh CH, Styner M, et al. Functional connectivity MR imaging reveals cortical functional connectivity in the developing brain. AJNR Am J Neuroradiol 2008;29:1883-1889   DOI   ScienceOn
16 Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006;31:968-980   DOI   ScienceOn
17 Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al. Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci U S A 2009;106:2035-2040   DOI   ScienceOn
18 Koch MA, Norris DG, Hund-Georgiadis M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 2002;16:241-250   DOI   ScienceOn
19 Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Aleman-Gomez Y, Melie-Garcia L. Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory. Neuroimage 2008;40:1064-1076   DOI   ScienceOn
20 Hofer S, Frahm J. Topography of the human corpus callosum revisited - Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage 2006;32:989-994   DOI   ScienceOn
21 Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, et al. DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. Neuroimage 2005;26:195-205   DOI   ScienceOn
22 Kim M, Ronen I, Ugurbil K, Kim DS. Spatial resolution dependence of DTI tractography in human occipito-callosal region. Neuroimage 2006;32:1243-1249   DOI   ScienceOn
23 Catani M, Thiebaut de Schotten M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 2008;44:1105-1132   DOI   ScienceOn
24 Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010;52:1059-1069   DOI   ScienceOn
25 Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999;9:179-194   DOI   ScienceOn
26 Fischl B, Sereno MI, Dale AM. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 1999;9:195-207   DOI   ScienceOn
27 Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, et al. Automatically parcellating the human cerebral cortex. Cereb Cortex 2004;14:11-22   DOI
28 Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, et al. Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage 2010;50:970-983   DOI   ScienceOn
29 Sporns O, Tononi G, Edelman GM. Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 2002;135:69-74   DOI
30 Rubinov M, Sporns O. Weight-conserving characterization of complex functional brain networks. Neuroimage 2011
31 Jeff W. Lichtman JL, Joshua R. Sanes. A technicolour approach to the connectome. Nature 2008;9:417-422
32 Michael D. Greicius BK, Allan L. Reiss , and Vinod Menon. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis Proceedings of the National Academy of Sciences of the United States of America 2002;100:253-258
33 Patric Hagmann MK, Xavier Gigandet, Patrick Thiran, Van J. Wedeen, Reto Meuli, Jean-Philippe Thiran. Mapping Human Whole-Brain Structural Networks with Diffusion MRI. PLoS ONE 2007;7:e597
34 Park HJ, Kim JJ, Lee SK, Seok JH, Chun J, Kim DI, et al. Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI. Hum Brain Mapp 2008;29:503-516   DOI   ScienceOn
35 Friston KJ. Commentary and opinion: II. Statistical parametric mapping: ontology and current issues. J Cereb Blood Flow Metab 1995;15:361-370   DOI   ScienceOn
36 Kim DJ, Park HJ, Kang KW, Shin YW, Kim JJ, Moon WJ, et al. How does distortion correction correlate with anisotropic indices? A diffusion tensor imaging study. Magn Reson Imaging 2006;24:1369-1376   DOI   ScienceOn
37 Felleman DJ, Van Essen DC. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1991;1:1-47
38 Counsell SJ, Dyet LE, Larkman DJ, Nunes RG, Boardman JP, Allsop JM, et al. Thalamo-cortical connectivity in children born preterm mapped using probabilistic magnetic resonance tractography. Neuroimage 2007;34:896-904   DOI   ScienceOn
39 Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev 2006;30:718-729   DOI   ScienceOn
40 Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, et al. The maturing architecture of the brain's default network. Proc Natl Acad Sci U S A 2008;105:4028-4032   DOI   ScienceOn
41 Hilgetag CC, Burns GA, O'Neill MA, Scannell JW, Young MP. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. Philos Trans R Soc Lond B Biol Sci 2000;355:91-110   DOI   ScienceOn
42 Latora V, Marchiori M. Economic small-world behavior in weighted networks. European Physical Journal B 2003;32:249-263   DOI   ScienceOn
43 Park HJ. Quantification of white matter using diffusion-tensor imaging. Int Rev Neurobiol 2005;66:167-212
44 Scannell JW, Burns GA, Hilgetag CC, O'Neil MA, Young MP. The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 1999;9:277-299   DOI
45 Young MP. Objective analysis of the topological organization of the primate cortical visual system. Nature 1992;358:152-155   DOI   ScienceOn
46 Lee JD, Park HJ, Park ES, Oh MK, Park B, Rha DW, et al. Motor pathway injury in patients with periventricular leucomalacia and spastic diplegia. Brain : a journal of neurology 2011
47 Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 2011;7:113-140   DOI   ScienceOn
48 Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 2009;19:72-78
49 Eguiluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV. Scale-free brain functional networks. Phys Rev Lett 2005;94:018102
50 Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 2005;15:1332-1342
51 Ferrarini L VI, Baerends E, van Tol MJ, Renken RJ, van der Wee NJ, Veltman DJ, et al. Hierarchical functional modularity in the resting-state human brain. Hum Brain Mapp 2009;30:2220-2231   DOI   ScienceOn
52 Meunier D, Achard S, Morcom A, Bullmore E. Age-related changes in modular organization of human brain functional networks. Neuroimage 2009;44:715-723   DOI   ScienceOn
53 Stam CJ. Functional connectivity patterns of human magnetoencephalographic recordings: a 'small-world' network? Neurosci Lett 2004;355:25-28   DOI
54 Achard S, Bassett DS, Meyer-Lindenberg A, Bullmore E. Fractal connectivity of long-memory networks. Phys Rev E Stat Nonlin Soft Matter Phys 2008;77:036104
55 Valencia M, Martinerie J, Dupont S, Chavez M. Dynamic small- world behavior in functional brain networks unveiled by an event-related networks approach. Phys Rev E Stat Nonlin Soft Matter Phys 2008;77:050905
56 Klaus Linkenkaer-Hansen VVN, J. Matias Palva, Risto J. Ilmoniemi. Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations. The Journal of Neuroscience 2001;21:1370-1377
57 Maxim V, Sendur L, Fadili J, Suckling J, Gould R, Howard R, et al. Fractional Gaussian noise, functional MRI and Alzheimer's disease. Neuroimage 2005;25:141-158   DOI   ScienceOn
58 Smit DJ, Stam CJ, Posthuma D, Boomsma DI, de Geus EJ. Heritability of "small-world" networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum Brain Mapp 2008;29:1368-1378   DOI   ScienceOn
59 Zhou C, Zemanova L, Zamora G, Hilgetag CC, Kurths J. Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys Rev Lett 2006;97:238103
60 Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, et al. Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 2009;19:524-536   DOI   ScienceOn