Browse > Article

Convergence of weighted sums of linearly negative quadrant dependent random variables  

Lee, Seung-Woo (School of mathematical Science and Institute of Basic Natural Science, Wonkwang University)
Baek, Jong-Il (School of mathematical Science and Institute of Basic Natural Science, Wonkwang University)
Publication Information
Journal of Applied Reliability / v.12, no.4, 2012 , pp. 265-274 More about this Journal
Abstract
We in this paper discuss the strong law of large numbers for weighted sums of arrays of rowwise LNQD random variables by using a new exponential inequality of LNQD r.v.'s under suitable conditions and we obtain one of corollary.
Keywords
Negative associated random variables; Negative quadrant dependent; linearly negative quadrant dependent random variables; AMS 1991 Subject Classification : 60F15;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Baek, J.I. et al(2009). On the strong law of large numbers for weighted sums id arrays of rowwise negatively dependent random variables. J.Korean Math.Soc. 4, No.4, 827-840.
2 Cai, Z. & Roussas, G.G.(1997). Smooth estimate of quantiles under association. Stat. & Probab.Lett. 36, 275-287.   DOI   ScienceOn
3 Hsu, P.L. & Robbins, H.(1947). Complete convergence and the law of large numbers. Proc. National. Acad. Sci. USA 33, 25-31.   DOI   ScienceOn
4 Hu, T.C. et al(1989). Strong laws of large numbers for arrays of rowwise independent random variables. Acta. Math. Hung. 54(1-2), 153-162.   DOI
5 Joag-Dev, K. & Proschan, F.(1983). Negative association of random variables with applications. Ann. Statist. 11, 286-295.   DOI   ScienceOn
6 Ko, M.H. et al(2007). Limiting behaviors of weighted sums for linearly negative quadrant dependent random variables. Taiwanese Journal of Mathematics. 11(2), 511-522.   DOI
7 Lehmann, E.L.(1966). Some concepts of dependence. The Annals of Mathematical Statistics. 37, 1137-1153.   DOI   ScienceOn
8 Newman, C.M.(1984). Asymptotic independence and limit theorems for positively and negatively dependent random variables. In Y. L. Tong(Ed.)., Statistics and probability. vol 5(pp. 127-140). Hayward, CA: Inst. Math. Statist.
9 Wang, X. et al(2010). Exponential inequalities and complete convergence for a LNQD sequence. Jour. of the Kor. Stat. Soci. 39, 555-564.   DOI
10 Wang, J. & Zhang, L.(2006). A Berry-Esseen theorem for weakly negatively dependent random variables and its applications. Acta Mathematica Hungarica. 110 (4), 293-308.   DOI   ScienceOn