Browse > Article
http://dx.doi.org/10.7841/ksbbj.2015.30.6.319

Effect of NaNO3 and NaHCO3 Concentration on Microglae Arthrospira platensis Growth  

Choi, Soo-Jeong (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University)
Ha, Jong-Myung (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University)
Lee, Jae-Hwa (Department of Pharmaceutical Engineering, College of Medical and Life Science, Silla University)
Publication Information
KSBB Journal / v.30, no.6, 2015 , pp. 319-325 More about this Journal
Abstract
Arthrospira platensis (A. platensis) is one of the most explored cyanobacteria and has been studied for proteins, vitamins, pigment (chlorophyll and carotenoids) and fatty acid. In this study, we tested the effect of $NaHCO_3$ and $NaNO_3$ on the microalgae growth under photoautothrophic culture in A. platensis. As a result, cell growth and dry cell weight were increased in proportion to the $NaHCO_3$ and $NaNO_3$ concentration. Pigment (chlorophyll and carotenoids) contents of A. platensis were increased with proportion to $NaHCO_3$ concentration. But, the content of pigment (chlorophyll and carotenoids) in 100% $NaNO_3$ medium of A. platensis was the highest, 40%, 140% and 200% $NaNO_3$ medium with pigment content of A. platensis was reduced. In conditions of $NaHCO_3$ (50%) or $NaNO_3$ (40%) limitation, A. platensis could accumulate lipids to high as 1.7-fold and 1.3-fold.
Keywords
Arthrospira platensis; $NaHCO_3$ and $NaNO_3$; Lipid; Pigment; Photosynthesis;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Pirt, S. J. (1986) The thermodynamic efficiency (quantum demand) and dynamics of photosyntehtic growth. New Phytol. 102: 3-37.   DOI
2 Benemann, J. R. (1997) $CO_{2}$ mitigation with microalgal systems. Energy convers Mgnt. 22: 475-479.
3 Micon, A. S., M. C. C. Garcia, A. C. Gomez, F. G. Camacho, E. M. Grima, and Y. Chisti (2003) Shear stress tolerance and biochemical characterization of Peaeodactylum tricounutum inquasi steadystate continuous culture in outdoor photobioreactors. Biochem. Eng. J. 16: 287-297.   DOI
4 Henrikson, (1989) Earth food Spirulina. California: Ronore Enterprises Inc, 180.
5 Estrada, J. E., P. Bescos, and A. M. Villar Del Fresno (2001) Antioxidant activigy of different frractions of Spirulina platensis protean extract. IL Farmaco, 56: 497-500.   DOI
6 Miranda, M. S., R. G. Cintra, S. B. M. Barros, and J. M. Filho (1998) Antioxidant activity of the microalga Spirulina maxima. Braz. J. Med. Biol. Res. 31: 1075-1079.   DOI
7 Wijffels, R. H. and M. J. Barbosa (2010) An outlook on microalgal biofuels. Science 329: 796-799.   DOI
8 Vicente, G., M. Martinez, and J. Aracil (2004) Integrated biodisel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol. 92: 297-305.   DOI
9 Karkos, P. D., S. C. Leong, C. D. Karkos, N. Siraji, and D. A. Assimkapoulos (2008) Review of Spirulina inclinical practice: Evidence- based human applications. Evid. base Compl. Alternative Med. 14: 1-4.   DOI
10 Choi, S.-J., Y.-H. Kim, A. Kim, and J.-H. Lee (2013) Arthrospira platensis mutants containing high lipid content by electron beam irradiation and analysis of its fatty acid composition. Appl. Chem. Eng. 24: 628-632.   DOI
11 Miron, A. S., F. G. Gamacho, Z. C. Gomez, E. M. Grima, and Y. Chisti (2000) Bubble column and airlift photobioreactors for algal culture. AIChE J. 46: 1872-1887.   DOI
12 Chiu, S., C. Kao, M. Tsai, S. Ong, C. Chen, and C. Lin (2009) Lipid accumulation and $CO_{2}$ utilization of Nannochloropsis oculata in response to $CO_{2}$ aeration. Bioresour. Technol. 100: 833-839.   DOI
13 Danesi, E. D. G., C. O. R. Yagui, J. C. M. Carvalho, and S. Sato (2004) Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy 102: 329-335.
14 Shen, Y., Z. Pei, W. Yuan, and E. Mao (2009) Effect of nitrogen and extraction method on algae lipid yield. Int. J. Agric. Biol. Eng. 2: 51-57.
15 Cullen, J. J., X. Yang, and H. L. Macintyre (1992) Nutrient limitation and marine photosynthesis. In Primary Productivity and Biochemical Cycles in the sea, 69-88, Plenum Press.
16 Brennan, L. and P. Owende (2010) Biofuels form microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust. Energ. Rev. 14: 557-577.   DOI
17 Converti, A., A. A. Casazza, E. Y. Ortiz, P. Perego, and M. E. Borghi (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process 48: 1146- 1151.   DOI
18 Geider, R. J., J. L. Roche, R. M. Greene, and M. Olaizola (1993) Response of the photosynthetic apparatus of Phaeodactylum triocormutum (Bacillario-phyceae) to nitrate, phosphate and iron starvation. J. Phycol. 29: 755-766.   DOI
19 Joo, S.-J., S. Zhang, K. J. Choi, S. M. Lee, and S.-J. Hwang (2014) Effects of sodium bicarbonate as an inorganic carbon source on the growth of Scenedesmus dimorphus. J. KSWW 28: 555-560.
20 Goldberg, I. K. and Z. Cohen (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696-701.   DOI
21 Choi, S.-J. and J.-H. Lee (2015) Characteristic of Arthrospira platensis enhanced antioxidant activity. Kor. Soc. Biotechnol. Bioeng. J. 30: 119-124.
22 Bertozzini, E., L. Galluzzi, A. Penna, and M. magnani (2011) Application of the standard addition method for the absolute quantification of newtural lipids in microalge using Nile red. J. Microbiol. Methods 87: 17.   DOI
23 Moon, S.-R., B.-K. Son, J.-O. Yang, J.-S. Woo, C. M. Yoom, and G.-H. Kim (2010) Effect of electron-beam irradiation on development and reproduction of Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae. Kor. J. Appl. Entomol. 49:129.
24 Chiu, S.-Y., C.-Y. Kao, M.-T. Tsai, S.-C. Ong, C.-H. Chen, and C.- S. Lin (2009) Lipid accumulation and $CO_{2}$ utilization of Nannochloropsis oculata in response to $CO_{2}$ aeration. Bioresour. Technol. 100: 833-838.   DOI
25 Chen, W., M. Sommerfeld, and Q. Hu (2011) Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour. Technol. 102: 135.   DOI
26 Jitendra, M., S. Priyanka, J. Madhulika, S. Mohsina, M. Komal, and K. Neha (2012) Impact of different physical and chemical environment for mass production of Spirulina platensis -an immunity promotor. I. Res. J. Biological Sci. 1: 49-56.
27 Li, X., H.-Y. Hu, K. Gan, and Y.-X. Sun (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a fresh water microalga Scenedesmus sp.. Bioresour. Technol. 101: 5494-5500.   DOI
28 Schmidt, L. E. and P. J. Hansen (2001) Allelopathy in the prymnesiophyte Chrysochromulina polylepis: Effect of cell concentration, growth phace and pH. Mar. Ecol. Prog. Ser. 216: 67-81.   DOI
29 Colla, L. M., C. O. Reinehr, C. Reichert, and J. A. V. Costa (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 98: 1489-1493.   DOI
30 Feng, D.-L., Z.-C. Wu, and D.-H. Wang (2007) Effects of N source and nitrification pretreatment on growth of Arthrospira platensis in human urine. J. Zheijang Univ. Sci. A 8: 1846-1852.   DOI
31 Sharma, G., M. Kumar, M. I. Ali, and N. D. Jasuja (2014) Effect of carbon content, salinity and pH on Spirulina platensis for phycocyanin, allophycocyanin and phycoerythrin accumulation. J. Microb. Biochem. Technol. 6: 202-206.
32 Chauhan, S., V. Kaithwas, R. Kachouli, and S. Bhargava (2013) Productivity of the cyanobacterium Spirulina platensis in culture using high bicarbonate and different nitrogen sources. American J. Plant. Physiol. 8: 17-31.   DOI
33 Vonshak, A., N. Kancharaksa, B. Bunnag, and M. Tahicharoen (1996) Role of light and photosynthesis on the acclimation process of the cyanobacteria Spirulina platensis to salinity stress. J. Appl. Phycol. 8: 119-124.   DOI
34 Kim, Y.-H., S.-J. Choi, H.-J. Park, and J.-H. Lee (2014) Electron beam-induced mutants of microalgae Arthrospira platensis increased antioxidant activity. Ind. Eng. Chem. 20: 1834-1840.   DOI
35 Ordog, V., W. A. Stirk, P. Balint, J. V. Staden, and C. Lovasz (2012) Change in lipid, protein and pigment concentrations in nitrogenstressed Chlorella minutissima cultures. J. Appl. Phycol. 24: 907-914.   DOI
36 Li, Y., M. Horsman, B. Wang, N. Wu, and C. Q. Lan (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleabundans. Appl. Micobiol. Biotechnol. 81: 629-636.   DOI
37 Boussiba, S., B. Wang, P. P. Yuan, A. Zarka, and F. Chen (1999) Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol. Lett. 21: 601-604.   DOI
38 Gill, I. and R. Valiverty (1997) Polyunsaturated fatty acids: Occurrence, biological activities and application. Trends Biotechnol. 15: 401-409.   DOI
39 Guiheneuf, F., V. Mimouni, L. Ulmann, and G. Tremblin (2009) Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J. Exp. Mar. Biol. Ecol. 369: 136-143.   DOI
40 Xia, L., J. Rong, H. Yang, Q. He, D. Zhang, and C. Hu (2014) NaCl as an effective inducer for lipid accumulation in fresh microalgae Desmodesmus abundans. Bioresour. Technol. 161: 402-409.   DOI
41 Feng, D., Z. Chen, S. Xue, and W. Zhang (2011) Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour. Technol. 102: 6710-6716.   DOI
42 Kim, G. R., G. Mujtaba, M. Rizwan, and K. S. Lee (2014) Environmental stress strategies for stimulating lipid production from microalgae for biodisel. Appl. Chem. Eng. 25: 553-558.   DOI