Browse > Article
http://dx.doi.org/10.7841/ksbbj.2014.29.4.297

Environmentally-Friendly Pretreatment of Rice Straw by an Electron Beam Irradiation  

Lee, Byoung-Min (Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
Lee, Jin-Young (Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
Kim, Du-Yeong (Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
Hong, Sung-Kwon (Department of Polymer Science and Engineering, Chungnam National University)
Kang, Phil-Hyun (Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
Jeun, Joon-Pyo (Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
Publication Information
KSBB Journal / v.29, no.4, 2014 , pp. 297-302 More about this Journal
Abstract
The autoclaving assisted by an irradiation pretreatment method was developed without toxic chemicals to produce fermentable sugars for their conversion to bioethanol. In the first step, electron beam irradiation (EBI) of rice straw was performed at various doses. The electron beam-irradiated rice straw was then autoclaved with DI water at $120^{\circ}C$ for 1 h. A total sugar yield of 81% was obtained from 300 kGy electron beam-irradiated rice straw after 72 h of enzymatic hydrolysis by Cellulase 1.5L (70 FPU/mL) and Novozyme-188 (40 CbU/mL). Also, the removal of hemicellulose and lignin was 32.0% and 32.5%, respectively. This result indicates that the environmentally-friendly pretreatment method of rice straw by an electron beam irradiation could be applied for bioethanol production in plant.
Keywords
Rice straw; Biomass; Pretreatment; Bioethanol; Electron beam;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Karthika, K., A. B. Arun, and P. D. Rekha (2012) Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation. Carbohyd. Polym. 90: 1038-1045.   DOI   ScienceOn
2 Saha, B. C., T. Yoshida, M. A. Cotta, and K. Sonomoto (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind. Crop. Prod. 44: 367-372.   DOI   ScienceOn
3 Oh, S. Y., D. I. Yoo, Y. Shin, H. C. Kim, H. Y. Kim, Y. S. Chung, W. H. Park, and J. H. Youk (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohyd. Res. 340: 2376-2391.   DOI   ScienceOn
4 Kumar, R., G. Mago, V. Balan, and C. E. Wyman (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Biosour. Bioeng. 100: 3948-3962.
5 Chundawat, P. S. S., B. Venkatesh, and B. E. Dale (2006) Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Appl. Biochem. Biotechnol. 96: 219-231.
6 Zhao, H., M. H. Kwak, C. Zhang, H. M. Brown, B. W. Arey, and E. H. Johnathan (2007) Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohyd. Polym. 68: 235-241.   DOI   ScienceOn
7 Selig, M, N. Weiss, and Y. Ji (2008) Enzymatic saccharification of lignocellulosic biomass. Technical Report NREL/TP-510-42629, NREL, Colorado, USA.
8 Bin, Y. and C. Hongzhang (2010) Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresource Technol. 101: 9114-9119.   DOI   ScienceOn
9 Sluiter, A., B. Hames, R. Ruiz, C. Scarlate, J. Sluiter, D. Templeton, and D. Crocker (2012) Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510- 42618, NREL, Colorado, USA.
10 TAPPI T 222 om-02 (2002) Acid-insoluble lignin in wood and pulp. Technical Association of the Pulp and Paper Industry.
11 Binod, P., R. Sindhu, R. R. Singhania, S. Vikram, L. Devi, S. Nagalakshmi, N. Kurien, R. K. Sukumaran, and A. Pandey (2010) Bioethanol production from rice straw: An overview. Bioresource Technol. 101: 4767-4774.   DOI   ScienceOn
12 Limayem, A. and S. C. Ricke (2012) Lignocellulosic biomass for bioethanol production-current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449-467.   DOI   ScienceOn
13 Gumuskaya, E., M. Usta, and H. Krici (2003) The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym. Degrad. Stabil. 81: 559-564.   DOI   ScienceOn
14 Chen, W. H., S. C. Ye, and H. K. Sheen (2012) Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment. Appl. Energ. 93: 234-244.
15 Khan, A. W (1986) Effects of electron-beam irradiation pretreatment on the enzymatic hydrolysis of softwood. Biotehchnol. Bioeng. 28: 1449-1453.   DOI   ScienceOn
16 Hsu, T. and G. Gou (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresource Technol. 101: 4907-4913.   DOI   ScienceOn
17 Lee, B. M., J. Y. Lee, P. H. Kang, S. K. Hong, and J. P. Jeun (2014) Improved pretreatment process using an electron beam for optimization of glucose yield with high selectivity. Appl. Biochem. Biotechnol. DOI 10.1007/s12010-014-1138-1   DOI
18 Wang, Z., D. R. Keshwani, A. P. Redding, J. J. Cheng, and Jay J. Cheng (2010) Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresource Technol. 101: 3583-3585.   DOI   ScienceOn
19 Kumar, P., D. M. Barrett, M. J. Delwiche, and P. Stroeve (2009) Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res. 48: 3713-3729.   DOI   ScienceOn
20 Wan, C. and Y. Li (2010) Microbial pretreatment of corn stover with ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technol. 101: 6398-6403.   DOI
21 Chen, W. H., B. L. Pen, C. T. Yu, and W. S. Hwang (2011) Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production. Bioresource Technol. 102: 2916-2924.   DOI
22 Chiaramonti, D., M. Prussi, S. Ferrero, L. Oriani, P. Ottonello, P. Torre, and F. Cherchi (2012) Review of pretreatment processes for lignocellulosic ethanol production, and development of an innovative method. Biomass Bioenerg. 46: 25-35.   DOI
23 Kim, S. D. and B. E. Dale (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenerg. 26: 361-375.   DOI   ScienceOn
24 Ratnam, B. V., M. N. Rao, M. D. Rao, and C. Ayyanna (2003) Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology. World J. Microb. Biot. 19: 523-526.   DOI   ScienceOn
25 Demirbas, A. (2008) Heavy metal adsorption onto agro-based waste materials: A review. J. Hazard. Mater. 157: 220-229.   DOI   ScienceOn
26 Standard Terminology Relating to Biotechnology, ASTM E1705-11.
27 Li, M. F., Y. M. Fan, F. Xu, R. C. Sun, and X. L. Zhang (2010) Cold sodium hydroxide/urea based pretreatment of bamboo for bioethanol production: Characterization of the cellulose rich fraction. Ind. Crop. Prod. 32: 551-559.   DOI
28 Girio, F. M., C. Fonseca, F. Carvalheiro, L. C. Duarte, S. Marques, and R. Bogel-Lukasik (2010) Hemicelluloses for fuel ethanol: A review. Bioresource Technol. 101: 4775-4800.   DOI   ScienceOn
29 Hideno, A., H. Inoue, T. Yanagida, K. Tsukahara, T. Endo, and S. Sawayama (2012) Combination of hot compressed water treatment and wet disk milling for high sugar recovery yield in enzymatic hydrolysis of rice straw. Bioresource Technol. 104: 743-748.   DOI
30 Bak, J. S., J. K. Ko, Y. H. Han, B. C. Lee, I. G. Choi, and K. H. Kim (2009) Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technol. 100: 1285-1290.   DOI   ScienceOn
31 Ruiz, R., Ehrman, T. (1996) Determining of carbohydrates in biomass by high performance liquid chromatography. Chemical Analysis and Testing Task Laboratory Analytical Procedure #002, NREL, Colorado, USA.
32 Reczey, V. K. and Z. Zacchi (2004) Optimization of steam pretreatment of corn stover to enhance enzymatic digestibility. Appl. Biochem. Biotech. 113: 509-523.