Browse > Article
http://dx.doi.org/10.7841/ksbbj.2011.26.5.407

Distribution of Electrochemically Active Bacteria in Activated Sludge Characteristics  

Son, Hyeng-Sik (Department of Microbiology, Pusan National University)
Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter)
Kim, Mi-A (Department of Microbiology, Pusan National University)
Lee, Sang-Joon (Department of Microbiology, Pusan National University)
Publication Information
KSBB Journal / v.26, no.5, 2011 , pp. 407-411 More about this Journal
Abstract
Microbial fuel cell (MFC) wes enriched using sludge in wastewater treatment. The microbial community of activated sludge and enriched MFC were analyzed by FISH (fluorescent in situ hybridization) and 16S rDNA sequencing. Bacteroidetes group were pre-dominant in activated sludge by FISH. ${\alpha}$ group, ${\gamma}$ group and Acintobacter group were dominant and they were similar to distribution. The average value of 10 peak of MFC is 0.44C. When MFC wase enriched by sludge, ${\gamma}$-Proteobacteria, Plantomycetes group increased 70% and 60%, respectively. In results of 16S rDNA sequencing, Sphiringomonas sp. was comprised in ${\alpha}$ proteobacteria and Enterobacter sp., Klebsiella sp., Acinetobacter sp., Bacillus sp. were comprised in ${\gamma}$ proteobacteria and Chryseobacterium sp. was comprised in Flavobacteria were isolated from sludge.
Keywords
Microbial Fuel Cell; Sludge; Microbial Community; FISH; 16S rDNA;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Park, D. H. and J. D. Zeikus (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292-1297.   DOI   ScienceOn
2 Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme. Microb. Technol. 30: 145-152.   DOI   ScienceOn
3 Liu, H., R. Ramnarayanan, and B. E. Logan (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38: 2281-2285.   DOI   ScienceOn
4 Kim, T. S. and B. H. Kim (1998) Modulation of Clostridium acetobutylicum fermantation by electrochemically supplied reducing equivalent. Biotechnol. Lett. 10: 123-128.
5 Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang (2001) A novel electrochemically active and Fe (III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a bacterial fuel cell. Anaerobe. 7: 297-306.   DOI   ScienceOn
6 Kim, G. T., M. S. Hyun, I. S. Chang, H. J. Kim, H. S. Park, B. H. Kim, S. M. Kim, and J. W. T. Wimpenny (2005) Dissimilatory Fe (III) reduction by electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99: 978-987.   DOI   ScienceOn
7 Chaudhuri, S. K. and D. R. Lovley (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232.   DOI   ScienceOn
8 Lovley, D. R., S. J. Giovannoni, D. C. White, J. E. Champine, E. J. P. Phillips, Y. A. Gorby, and S. Goodwin (1993) Geobacter metallireducens gen. nov. sp. now., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron, and other metals. Arch. Microbiol. 159: 336-344.   DOI   ScienceOn
9 Caccavo, F., J. D. Coates, R. A. Rossello-Mora, W. Ludwig, K. H. Schleifer, D. R. Lovley, and M. J. McInerney (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe (III)- reducing bacterium. Arch. Microbiol. 165: 370-376.   DOI   ScienceOn
10 Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science. 295: 483-485.   DOI   ScienceOn
11 Lovley, D. R., E. J. P. Phillips, and D. J. Lonergan (1989) Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55: 700-706.
12 Lovley, D. R., F. Caccavo, and E. J. P. Phillips (1992) Acetate oxidation by dissimilatory Fe (III) reducers. Appl. Environ. Microbiol. 58: 3205-3206.
13 Wagner, M., R. Amann, H. Lemmer, and K. Scheleifer (1993) Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59: 1520-1525.
14 Tebo, B. M. and A. Y. Obraztsova (1998) Sulfate-reducing bacterium grows with Cr (VI), U (VI), Mn (IV), and Fe (III) as electron acceptors. FEMS Microbiol. Lett. 162: 193-198.   DOI   ScienceOn
15 Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and T. N. Phung (2004) Enrichment of microbial community generating electrocity using a fuel cell type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681.   DOI   ScienceOn
16 Nübel, U., F. Garcia-Pichel, and G. Muyzer (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63: 3327-3332.
17 Glockner, F. O., B. M. Fuchs, and R. Amann (1999) Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65: 3721-3726.
18 Wagner, M., R. Erhart, W. Manz, R. Amann, H. Lemmer, D. Wedi, and K. H. Schleifer (1994) Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbial. 60: 792-800.
19 Neef, A., R. Amann, H. Schlesner, and K. Scheleifer (1998) Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiol. 144: 3257-3266.   DOI   ScienceOn
20 Juretschko, S., A. Loy, A. Lehner, and M. Wagner (2002) The Microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA Approach. Syst. Appl. Microbiol. 25: 84-99.   DOI   ScienceOn
21 Manz, W., M. Eisenbrecher, T. R. Neu, and U. Szewzyk (1998) Abundance and spatial organization of gram-negative sulfatereducing bacteria in activated sludge investigated by in situ probing with specific 16S rRNA targeted oligonucleotides. FEMS Microbiol. Ecol. 25: 43-61.   DOI   ScienceOn
22 Lee, J., N. T. Phung, I. S. Chang, B. H. Kim, and H. C. Sung (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223: 185-191.   DOI   ScienceOn
23 Meier, H., R. Amann, W. Ludwig, and K. H. Schleifer (1999) Specific oligonucleotide probes for In situ detection of a major group of gram-positive bacteria with Low DNA G+C content. Syst. Appl. Microbiol. 22: 186-196.   DOI   ScienceOn
24 Eschenhagen, M., M. Schuppler, and I. Röske (2003) Molecular characterization of the microbial community structure in two activated sludge systems for the advanced treatment of domestic effluents. Water Res. 37: 3224-3232.   DOI   ScienceOn
25 Adav, S. S., D. J. Lee, and J. Y. Lai (2009) Biological nitrificationdenitrification with alternating oxic and anoxic operations using aerobic granules. Appl. Microbiol. Biotechnol. 84: 1181-1189.   DOI   ScienceOn
26 Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681.   DOI   ScienceOn
27 Aelterman, P., K. Rabaey, T. H. Pham, N. Boon, and W. Verstraete (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40: 3388-3394.   DOI   ScienceOn