Browse > Article

Form I Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase from CO2-Fixing Chemoautotrophic bacterium, Aeromonas sp. strain JS-1: Purification and Properties  

Na, Suk-Hyun (Department of Environmental Engineering, Chonnam National University)
Bae, Sang-Ok (Department of Culinary Art, Chodang University)
Jung, Soo-Jung (Yeongsan River Basin Environmental Office)
Chung, Seon-Yong (Department of Environmental Engineering, Chonnam National University)
Publication Information
KSBB Journal / v.25, no.6, 2010 , pp. 559-564 More about this Journal
Abstract
A new hydrogen-oxidizing bacterium, Aeromonas sp. strain JS-1, that can fix $CO_2$ via the reductive pentose phosphate cycle (Calvin-Benson cycle) under chemoautotrophic conditions but not photoautotrophic conditions was isolated from fresh water. Strain JS-1 showed considerable $CO_2$ fixation ability during continuous cultivation even at high $CO_2$ concentration. Strain JS-1 used $H_2$ and $CO_2$ fixation as energy and carbon sources, respectively. Carbon dioxide fixation is carried out through the Calvin-Benson cycle, in which ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is the key enzyme. Hydrogen-oxidizing chemoautotrophic Aeromonas sp. strain JS-1 exhibited remarkedly strong RubisCO [EC 4.1.1.39] activity. RubisCO was purified as an $L_8S_8$-type hexadecamer with molecular mass of 560 kDa by gel filtration. The enzyme consisted of two different subunits eight large (56 kDa) and eight small (15 kDa), as demonstrated by SDS-PAGE. The specific activity of the purified enzyme was about 3.31 unit/mg and stable up to $45^{\circ}C$. The $K_m$ values for RuBP, $CO_2$, and $Mg^{2+}$ were estimated to be 0.25 mM, 5.2 mM and 0.91 mM, respectively.
Keywords
Ribulose-1,5-bisphosphate carboxylase/ oxygenase (RubisCO); Aeromonas sp. strain JS-1; Chemoautotrophic microorganism; Calvin-Benson cycle; $CO_2$ fixation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Skjanesa, K., P. Lindbladb, and J. Mullerc (2007) Bio $CO_{2}$ - A multidisciplinary, biological approach using solar energy to capture $CO_{2}$ while producing $H_{2}$ and high value products. Biomol. Eng. 24: 405-4131.   DOI   ScienceOn
2 Kim, T. H., K. D. Sung, J. S. Lee, J. Y. Lee, S. J. Ohh, and H. Y. Lee (1997) Biological Fixation of Carbon Dioxide Using Photosynthetic Microalga, Chlorococcum littorale. Kor. J. Appl. Microbiol. Biotechnol. 25: 235-239.
3 Maeda, K., M. Owada, N. Kimura, K. Omata, and I. Karube (1995) $CO_{2}$ fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers. Manage. 36: 717-720.   DOI   ScienceOn
4 Robert Tabita, F., J. L. Gibson, B. Botho. D. Lubbert, and G. M. Wim (1992) Uniform designation for genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of bacteria. FEMS Microbiol. Lett. 99: 107-110.   DOI
5 Robert Tabita, F. (2007) RubisCO: The Enzyme that Keeps on Giving. Cell 129: 1039-1040.   DOI   ScienceOn
6 Chung, S. Y., K. Yokoyama, M. Gomi, N. Teaumroong, M. Ishii, Y. Igarashi, and T. Kodama (1994) Purification and some properties of ribulose-1,5-bisphosphate carboxylase/oxygenase from a thermophilic hydrogenoxidizing bacterium, Pseudomonas hydrogenothermophila strain TH-1. J. Ferment. Bioeng. 78: 469-471.   DOI   ScienceOn
7 Chung, S. Y., T. Yaguchi, H. Nishihara, Y. Igarashi, and T. Kodama (1993) Purification of form$L_{2}$RubisCO from a marine obligately autotrophic hydrogen-oxidizing bacterium, Hydrogenovibrio marinus strain MH-110. FEMS Microbiol. Lett. 109: 49-53.   DOI
8 Yaguchi, T., S. Y. Chung, Y. Igarashi, and T. Kodama (1992) Purification of RubisCO from the thermophilic cyanobcterium synechococcus sp. strain a-1. J. Ferment. Bioeng. 73: 348-351.   DOI   ScienceOn
9 Bradford, M. (1976) A rapid and sensitive method for the quantitiation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
10 Laemmli, U. K. (1970) Cleavage of structural proteins during the asembly of the head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
11 Hanagata, N., T. Takeuchi, Y. Fukuju, D. J. Barnes, and I. Karube, (1992) Tolerance of microalgae to high $CO_{2}$high temperature. Phytochem. 31: 3345-3348.   DOI   ScienceOn
12 Gonzalez, C. V., F. G. Acien Fernandez, J. M. Fernandez Sevilla, J. F. Sanchez Fernández, M. C. Ceron Garcia, and E. Molina Grima (2009) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in $CO_{2}$ removal processes. Bioresour. Technol. 100: 5904-5910.   DOI   ScienceOn
13 Hollowaya, S., J. M. Pearcea, V. L. Hardsa, T. Ohsumib, and J. Galec (2007) Natural emissions of $CO_{2}$ from the geosphere and their bearing on the geological storage of carbon dioxide. Energy 32: 1194-1201.   DOI   ScienceOn
14 Wolter, M., S. Prayino, and F. Schuchardt (2004) Green house gas emission during storeage of pig manure on a pilot scale. Bioresour. Technol. 95: 235-244.   DOI   ScienceOn
15 Mavroudi, M., S. P. Kaldis, and G. P. Sakellaropoulos (2003) Reduction of $CO_{2}$ emissions by a membrane contacting process. Fuel 82: 2153-2159.   DOI   ScienceOn