Browse > Article

Optimum Conditions for the Production of Keratinase by Bacillus sp. KN-517 and Application to the Degradation of Hair  

Kim, Hye-Sook (Department of Bioengineering at the Postgraduate School, Konkuk University)
Shim, Kyu-Nam (Department of Microbiological Engineering, Konkuk University)
Kang, Sang-Mo (Department of Bioengineering at the Postgraduate School, Konkuk University)
Publication Information
KSBB Journal / v.25, no.3, 2010 , pp. 230-238 More about this Journal
Abstract
A microbial strain having high keratinase activity was isolated from the soil of poultry factories of Gyeonggi or Chungcheong-do. The isolated strain was identified as Bacillus sp. based on its morphological and biochemical characteristics. In this study, the optimal conditions for the production of keratinase by this strain were investigated. The optimal medium composition for the keratinase production was determined to be 3.5% chicken feather as carbon source, 1.0% tryptone as organic nitrogen source, 1.0% $KNO_3$ as inorganic nitrogen source and 0.05% KCl, 0.05% $KH_2PO_4$, 0.03% $K_2HPO_4$ as mineral source and 0.01% yeast extract as growth factor. The optimal temperature and pH was $40^{\circ}C$ and 8.5 with shaking culture (200 rpm), respectively. The maximum keratinase production reached to 123 units/ml after 42 hr of cultivation under the optimal condition. When the hair was used as the sole carbon source, the maximum enzyme activity was 88 units/ml after 120 hr and in this case, the hair added in the medium was not degraded completely but got thinner than the control by 20%.
Keywords
Karatinase; Bacillus sp; Production optimization; hair;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Bang, B. H., M. S. Rhee, K. H. Lim, and D. H. Yi (2008) Optimal Culture Condition on the keratinase Production by Bacillus sp. SH-517. J. Life Sci. 18: 839-844.   과학기술학회마을   DOI
2 Wang, J. J. and J. C. H. Shih (1999) Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29. J. Ind. Microbilo. Biotechnol. 22: 608-616.   DOI   ScienceOn
3 Farag, A. M. and M. A. Hassan (2004) Purification, characterization and, immobilization of a keratinase from Aspergillus oryzae. Enzyme and, Microbial technol. 34: 85-93.   DOI   ScienceOn
4 Williams, C. M., C. S. Richter, J. M. Makenzie, and C. H. S. Jason (1990) Isolation, Identification and, characterization of a Feather Degrading Bacterium. Applied and, Environ. Appl. Environ. Microbiol. 56: 1509-1515.
5 Kaluzewska, M., K. Wawrzkiewicz, and J. Lobarzewski (1991) Microscopic examination of keratin substrates subjected to the action of the enzymes of Streptomyces fradiae. Int. Biodeterior. 27: 11-26.   DOI   ScienceOn
6 Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande (1998) Molecular and, biotechnological aspects of microbial. Microbiol. Mol. Biol. Rev. 62: 597-635.
7 Latshaw, J. D., N. Musharaf, and R. Returm (1994) Processing of feather to maximize its nutritional value for poultry. Animal Feed Sci. Technol. 47: 179-188.   DOI
8 Yu, R. J., S. R. Harmon, and F. Blank (1968) Isolation and purification of an extracellular keratinase of Trichophyton mentagrophytes. J. Bacteriol. 96: 1435-1436.
9 Lee, W. K. (1998) Hair Beauty Culture Learning, pp. 105-116, Chung-ku Public, Company, KOR.
10 Lee, Y. J., J. H. Kim, and J. S. Lee (2004) Production and, characterization of keratinase from Paracoccus sp. WJ-98. Biotechnology and Bioprocess Engineering 9: 17-22.   DOI
11 Kang, H. J., T. S. Jung, T. G. Kim, Y. J. Eo, and J. H. Kim (2003) Isolation and, characterization of fetherdegrading bacterial strains. Kor. J. Vet. Publ. Hlth. 27: 129-134.
12 Peter, H. A. S., S. M. M. Nicholas, E. Sharpe, and J. G. Holt (1984) Bergey's Manual of Systematic Bacteriology. 2: 1122-1123.
13 Giongo, J. L., F. S. Lucas, F. Casarin, P. Heeb, and A. Brandelli (2007) Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World J. Microbiol. Biotechnol. 23: 375-382.   DOI   ScienceOn
14 Page, W. J. and J. J. Stock (1974) Phosphate-mediated Alteration of the Microsporum gypseum Germination Protease Specificity for Substrate: Enhanced Keratinase Activity. J. Bacteriol. 117: 422-431.
15 Brigitte, B, G. Boris, and M. Rudolf (1995) Chaacterization of a Keratinolytic Serine Proteinase from Sreptomyces pactum DSM 40530. Applied and Environ. Microbiol. 61: 3705-3710.
16 Fujita, Y. (2009) Carbon catabolite control of the matabloic network in Bacillus subtilis. Biosci. Biotechnol Biochem. 73: 245-259.   DOI   ScienceOn
17 Kant, S., R. Kapoor, and N. Banerjee (2009) Identification of a catabolite-responsive element necessary for regulation of the cry4A gene of Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 191: 4687-4692.   DOI   ScienceOn
18 Adiguzel, A, C., B. O. Bitlis, I. Tasa, and N. T. Eriksen (2009) Sequential secretion of collagenolytic, elastolytic and keratinolytic proteases in peptide-limited cultures of two Bacillus cereus strains isolated from wool. J. Appl. Microbilo. 107: 1264-5072.
19 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Rabdall (1951) Protein measurement with Folin phenol reagent. J. Biol. Chem. 193-265.
20 Kim, J. D. (2003) Preliminary characterization of keratinolytic enzyme of Aspergillus flavus K-03 and, its potential in biodegradation of keratin wastes. Mycobiology. 31: 209-213.   과학기술학회마을   DOI
21 Kim, D. S., H. R. Kim, T. J. Nam, and J. H. Pyeun (1999) Medium Composition of Asperzillus oryzae PF for the Production of Proteolytic Enzyme. Kor. J. Appl. Microbiol. Bio-technol. 27: 404-409.
22 Suntornsuk, W. and L. Suntornsuk (2003) Feather degradation by Bacillus-sp. FK46 in sbumerged cultivation. Bioresource Technol. 86: 239-243.   DOI   ScienceOn
23 Seshadri, I. P. and B. Bhushan (2008) In situ tensile deformation characterization of human hair with atomic force microscopy. Acta materialial. 56: 774-781.   DOI   ScienceOn
24 Young, R. A. and R. E. Smith (1975) Degradation of feather keratin by culture filtrates of Streptomyces fradiae. Can. J. Microbiol. 21: 583-586.   DOI   ScienceOn
25 Wolfram, L. J. (2003) Human Hair: A unique physicochemical composite. J. Am. Acad. Dermatol. 48: 106-14.   DOI
26 Wilkson, J. B. and R. J. Moore (1984) Harry's Cosmiticology, 7th ed., pp. 124-156, Chemical Publishing Company, New York, USA.
27 Brown, A. C. and J. A. Swift (1975) Hair breakage: the scanning electron microscope as a diagnostic tool. J. Soc. Cosmet. Chem. 26: 289-297.
28 Kim, H. R. and P. S. O (1991) Isolation of neutral protease Hyperproducing Bacillus sp. KN103N and, Some Properties of the enzyme. Kor. J. Appl. Microbiol. Biotechnol. 19: 116-121.
29 Gupta, R. and P. Ramnani (2006) Microbial keratinases and, their prospective application: an overview. Appl. Microbiol. Biotechnol. 70: 21-33.   DOI   ScienceOn
30 Cheo, K. H., S. H. Kim, K. G. Lee, M. J. Kim, and H. S. Gwak (2001) Hair Science, 3rd ed., pp. 164-170, Soo Mun Publishing Company, Seoul, Korea.
31 Farag, A. M. and M. A Hassan (2004) Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme and Microbial Technology 34v 85-93.
32 Baker, D. H., R. C. Blitenthal, K. P. Boebel, G. L. Czarnecki, L. L. Southern, and G. M. Willis (1981) Protein-amino acid evaluation of steam-processed feather meal. Poult. Sci. 60: 1865-1872.   DOI
33 Papadopoulose, M. C., A. R. Eiboushy, and E. H. Ketelaars (1985) Effect of different processing condition on amino acid digestibility of feather meal determined by chick assay. Poult. Sci. 64: 1729-1742.   DOI
34 Vignardet, C., Y. C. Guillaume, J. Friedrich, and J. Millet (1999) A first order experimental design to assess soluble proteins released by a new keratinase from Doratomyces microsporus on human substrates. Int. J. Pharm. 191: 95-102.   DOI   ScienceOn