Browse > Article

Production of Invertase from Newly Isolated Strain Bacilus flexus  

Oh, Tae-Seok (Department of Biotechnology, Daegu University)
Yun, Hee (Department of Biotechnology, Daegu University)
Sim, Ye-Ji (Department of Biotechnology, Daegu University)
Kim, Jin-Woo (Department of Biotechnology, Daegu University)
Choi, Min-Ji (Department of Biotechnology, Daegu University)
Yun, Jong-Won (Department of Biotechnology, Daegu University)
Publication Information
KSBB Journal / v.25, no.1, 2010 , pp. 79-84 More about this Journal
Abstract
In the present study, we isolated a new bacterial strain producing invertase (EC 3.2.1.26) and determined optimized culture condition in flask culture. The strain was identified as Bacilus flexus determined by the 16S rDNA sequencing method. The invertase was produced only in the sucrose medium as the sole carbon source. Potassium nitrate was an adequate nitrogen source for enzyme production, whereas meat peptone showed the highest bacterial growth. Enzyme production was increased about 2-fold when $MgSO_4\cdot7H_2O$ was supplemented to the growth media. The optimum temperature was found to be $30^{\circ}C$ for both enzyme production and bacterial growth. Invertase exhibited pH optima in the range 5.0-6.0 and have a temperature optimum at $40^{\circ}C$, similarly to other invertases found from different microbial sources. Several mineral ions (K and Fe) stimulated the invertase activity, whereas some bioelements (Ag, Mg, and Mn) inhibited enzyme activity. Under the optimized culture condition, the maximum enzyme production (over 250 units/mL) was achieved at 20 h. To the best of our knowledge, this is the first time to report on invertase production by Bacilus flexus.
Keywords
Bacilus flexus; invertase; invert sugar; medium optimization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Watanabe, T. and Y. Oda (2008) Comparison of sucrose-hydrolyzing enzymes produced by Rhizopus oryzae and Amylomyces rouxii. Biosci. Biotechnol. Biochem. 72: 3167-3173.   DOI   ScienceOn
2 Kumar, S., V. S. Chauhan, and P. Nahar (2008) Invertase embedded-PVC tubing as a flow-through reactor aimed at conversion of sucrose into inverted sugar. Enzyme Microb. Technol. 43: 517-522.   DOI   ScienceOn
3 Haq, I. U., M. A. Baig, and S. Ali (2005) Effect of cultivation conditions on invertase production by hyperproducing Saccharomyces cervisiae isolates. World J. Microbiol. Biotechnol. 21: 487-492.   DOI   ScienceOn
4 Zhao, J., X. Lan, J. su, L. Sun, and E. Rahman (2008) Isolation and identification of an alkaliphilic Bacillus flexus XJU-3 and analysis of its alkaline amylase. Acta Microbiol. Sin. 448: 750-6.
5 Gianfreda, L., P. Parascandola, and V. Scardi (1982) Sucrose inversion by gelatin-entrapped cells of yeast. Biotechnol. Lett. 4: 753-758.   DOI
6 Toksoy, E., Z. I. Onsan, and B. Kirdar (2002) High-level production of TaqI restriction endonuclease by three different expression systems in Escherichia coli cells using the T7 phage promoter. Appl. Microbiol. Biotechnol. 59: 239-245.   DOI   ScienceOn
7 Somashekara, D. M., N. K. Rastogi, and S. T. Ramachandriah (2009) A simple kinetic model for growth and biosynthesis of polyhydroxyalkanoate in Bacillus flexus. N. Biotechnol. Vol. 26.
8 Hong, J. M. and K. A. Lee (1990) Production and properties of invertase from Aspergillus niger. J. Korean Soc. Food Nutr. 19: 577-587.
9 Bang, B. H., G. S. Lee, and C. Y. Yang (1989) Calcium alginate-entrapped yeast whole-cell invertase. Korean J. Food & Nutr. 2: 14-20.
10 Sayago, J. E. and M. A. Vattuone (2002) Proteinaceous inhibitor versus fructose as modulators of Pteris dejlexa invertase activity. J. Enzyme Inhib. Med. Chem. 17: 123-130.   DOI   ScienceOn
11 Byung, O. L., K. D. Moon, and T. H. Shon (1990) Purification and characterization of invertase in astringent persimmon during sun drying. Korean J. Dietary culture. 5: 2.
12 Shiomi, N. (1978) Isolation and identification of L-kestose and neokestose from onion bulbs. J. Fac. Agric. Hokkaido Univ. 58: 321.
13 Liu, C. C. and L. C. Huang (2006) Purification and characterization of soluble invertases from suspension-cultured bamboo (Bambusa edulis) cells. Food Chem. 96: 621-631.   DOI   ScienceOn
14 Kaur, N. and A. D. Sharma (2005) Production, optimization and characterization of extracellular invertase by an actinomycete strain. J. Sci. Ind. Res. (India) 64: 515-519.
15 Rashad, M. M. and M. U. Nooman (2009) Production, purification and characterization of extracellular invertase from Saccharomyses cerevisiae NRRL Y-12632 by solid-state fermentation of red carrot residue. Aust. J Basic Appl. Sci. 3: 1910-1919.
16 Yanase, H., H. Fukushi, N. Ueda, Y. Maeda, A. Toyoda, and K. Tonomura (1991) Clonig, sequencing, and characterization of the intracellular invertase gene from Zymomonas mobilis. Agric. Biol. Chem. 55: 1383-1390.   DOI   ScienceOn
17 Goosen, C, X. L. Yuan, J. M. van Munster, A. F. J. Ram, M. J. E. C. van der Maarel, and L. Dijkhuizen (2007) Molecular and biochemical characterization of a novel intracellular invertase from Aspergillus niger with transfructosylating activity. Eukaryotic Cell. 674-681.
18 Rubio, M. C., R. Runco, and A. R. Navarro (2002) Invertase from a strain of Rhodotorula glutinis. Phytochemistry. 61: 605-609.   DOI   ScienceOn
19 Haq, I., S. Ali, A. Aslam, and M. A. Qadeer (2008) Characterization of a Saccharomyces cerevisiae mutant with enhanced production of $\Beta$-D-fructofuranosidase. Bioresour. Technol. 99: 7-12.   DOI   ScienceOn
20 Patkar, A., J. H. Seo, and H. C. Lim (1993) Modeling and optimization of cloned invertase expression in Saccharomyces cerevisiae. Biotechnol. Bioeng. 41: 1066-74.   DOI   ScienceOn
21 Choi, M. J., C. Kim, S. O. Lee, and T. H. Lee (1990) Purification and characterization of the external invertase constitutively produced by Rhodotorula glutinis K-24. Kor. J. Appl. Microbiol. Biotech. 18: 368-375.
22 Hussain, A., M. H. Rashid, R. Perveen, and M. Ashraf (2009) Purification, kinetic and thermodynamic characterization of soluble acid invertase from sugarcane (Saccharum officinarum L.). Plant Physiol. and Biochem. 47: 188-194.   DOI   ScienceOn
23 Gianfreda, L., P. Parascandola, and V. Scardi (1980) Gelatin-entrapped whole-cell invertase. European J. Appl. Microbiol. Biotechnol. 17: 481-497.
24 Parascandola, P. and V. Scardi (1981) A new method of whole microbial cell immobilization. Appl. Microbiol. Biotechnol. 11: 6-7.
25 Myrback, K. (1960) Invertase. pp. 379-396. In: P. D. Boyer, H. Lardy, and Myrback, K. (ed.). The enzyme, Vol. 4. Academic Press Inc, NY, USA.
26 Yu, J. S. (2006) Purification and Characterization of an Invertase Produced by Saccharomyces Cerevisiae Isolated from Home-made Wine. Master. Thesis. University of Konkuk, Seoul, Korea.
27 Goldstein, H., P. W. Barry, A. B. Rizzuto, K. Venkatasubramanian, and W. R Vieth (1977) Continuous enzymatic production of invert sugar. J. Ferment. Technol. 55: 516-524.