Browse > Article

Development of Bioartificial Skin for Skin Regeneration  

Seo, Young-Kwon (Dongguk University Research Institute of Biotechnology, Dongguk University)
Song, Kye-Yong (Department of Pathology, Chung-Ang University)
Park, Jung-Keug (Department of Chemical and Biochemical Engineering, Dongguk University)
Publication Information
KSBB Journal / v.23, no.1, 2008 , pp. 8-17 More about this Journal
Abstract
There are many different approaches to healing of acute and chronic ulcer and large skin defect, such as burn. Currently available wound covers fall into two categories. Permanent covering, such as autografts, and temporary ones, such as allograft including de-epidermized cadaver skin, bioartificial skin, xenografts, and synthetic dressings. Autologous skin grafting in the form of split- or full-thickness skin is still the good standard. Following on from developments in the 1980s involving the use of cultured keratinocyte grafts in wound healing, the last decade has been great progress in the fabrication of composite bioartificial skin grafts. However, two bottleneck on producing cultured bioartificial skin, whether of the simple epithelial cell sheet type, or the more complex composite type, continue to be the generation of sufficient keratinocytes cheaply and quickly and develop biocompatible dermal scaffolds. This article covers the development, clinical application, and current research directions associated with bioartificial skin.
Keywords
bioartificial skin; scaffolds; tissue engineering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hansbrough, J. F., and E. S. Franco (1998), Skin replacements, Clin. Plast. Surg. 25, 407-423
2 Abbott, W. M., and J. S. Hembree (1970), Absence of antigenicity in freeze-dried skin allografts, Cryobiology 6, 416-418   DOI   ScienceOn
3 Callcut, R. A., M. J. Schurr, M. Sloan, and L. D. Faucher (2006), Clinical experience with Alloderm : a one -staged composite dermal/epidermal replacement utilizing processed cadaver dermis and thin autografts, Burns 32, 583-588   DOI   ScienceOn
4 Rennekampff, H. O ., V. Kiessig, S. Griffey, G. Greenleaf, and J. F. Hansbrough (1997), Acellular human dermis promotes cultured keratinocyte engraftment, J. Burn Care Rehabil. 18, 535-544   DOI   ScienceOn
5 Jasinkowski , N. L., and J. L. Cullum (1984), Human amniotic membrane as a wound dressing, AORN J. 39, 894-895   DOI
6 Kawai, K, S. Suzuki, Y. Tabata, Y. Ikada, and Y. Nishimura (2000), Accelerated tissue regeneration through incorporation of basic fibroblast growth factor -impregnated gelatin microspheres into artificial dermis. Biomaterials 21, 489-499   DOI   ScienceOn
7 Lin, S. D., C. S. Lai, C. K. Chou, C. W. Tsai, K. F. Wu, and C. W. Chang (1992), Microskin autograft with pigskin xenograft overlay; a preliminary report of studies on patien ts, Burn 18, 321-325   DOI   ScienceOn
8 Burt, A. M., C. D. Pallett, J. P. Sloane, M. J. O' Hare, K. F. Schafler, P. Yardeni, A. Eldad, J. A. Clarke, and B. A. gusterson (1989), Survival of cultured allografts in patients with bums assessed with probe specific for Y chromosome, BMJ. 298, 915-917   DOI
9 Guerret, S., E. Govignon, D. J. Hartmann, and V. Ronfard (2003) Long-term remodeling of a bilayered living human skin equivalent(Apligra$circledR$) grafted onto the nude mice : immunolocalization of human cells and characterization of extracellular matrix, Wound Rep. Reg. 11, 35-45   DOI   ScienceOn
10 Naughton, G., J Mansbridge, and G. Gentzkow (1997), A metabolically active human dermal replacement for the treatment of diabetic foot ulcers, Artif. Organs 21, 1203-1210   DOI   ScienceOn
11 Nehrer, S., H. A. Breinan, A. Ramappa, G. Young, S. Shortkroff, L. K. Louse, C. B. Sledge, I. V. Ya nnas, and M. Spector (1997), Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes, Biomaterials 18, 769-776   DOI   ScienceOn
12 Hanbrough, J. F., D. W. Mozingo, P. Kealey, M. Davis, A. Gidner, and G. D. Gentzkow (1997), Clinical trials of a biosynthetic temporary skin replacement, Dennagraft-transitional covering, compared with cryopreserved human cadaver skin for temporarycoverage of excised bum wounds, J. Burn Care Rehabil. 18, 43-51   DOI   ScienceOn
13 Sabolinski M. L., O. Alvarez , M. Auletta, G. Mulder , and N. L. Parenteau (1996), Cultured skin as a smart material for healing wounds.experience in venous ulcers, Biomaterials 17, 311-320   DOI   ScienceOn
14 Eaglstein , W. H., M. Iriondo, and K. Laszlo (1995), A composite skin substitute (Graftskin) for surgical wounds, Dermatol. Surg. 21, 839-843   DOI
15 Orgill, D. P., and I. V. Yannas (1998), Design of an artificial skin N. Ues of island graft to isolate organ regeneration from scar synthesis and other processes leading to skin wound closure , J. Biomed. Mater. Res. 39, 531-535   DOI   ScienceOn
16 Berthod, F., F. Sahuc, D. Hayek, O. Damour, and C. Collombel (1996), Deposition of collagen fibriles bundles by long -term culture of fibroblast in a collagen sponge, J. Biomed. Mater. Res. 32, 87-93   DOI   ScienceOn
17 Lamme E. N., R. T. van Leeuwen, J. R. Mekker, E. Middelkoop (2002), Allogeneic fibroblasts in dermal substitutes induce inflammation and scar formaion, Wound Repair Regen . 10, 152-160   DOI   ScienceOn
18 Doillon , C. J., F. H. Silver, and R. A. Berg (1987), Fibroblasts growth on a porous collagen sponge containing hyaluronic acid and fibronectin, Biomaterials 8, 195-200   DOI   ScienceOn
19 Alexander, S. A., and R. B. Donoff (1980), The glycosaminoglycans of open wound, J. Surg. Res. 29, 422-429   DOI   ScienceOn
20 Hu, M., E. E. Sabelman, Y. Gao, J. Chang , and V. R. Hentz (2003), Three-dimensional hyaluronic acid grafts promote healing and reduce scar formation in skin incision wounds, J. Biomed. Mater. Res. B Appl. Biomater. 67, 586-592
21 Boralidi, F., M. A. Croce, D. Quaglino, R. Sammarco, E. Camevali, R. Tiozzo, and I. Pasquali-Ronchetti (2003), Cell-matrix interactions of in vitro human skin fibroblasts upon addition of hyaluronan , Tissue Cell 35, 37-45   DOI   ScienceOn
22 Greco, R. M., J. A. Iocono, and H. P. Ehrich (1998), Hyaluronic acid stimulates human fibroblast proliferation within a collagen matrix , J. Cell. Physiol. 177, 465-473   DOI   ScienceOn
23 Cuono, C., R. Langdon, and J. McGuire (1986), Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury, Lancet 17,1123-1124
24 Ahn, J. I., I. K. Jang, D. H. Lee, Y. K. Seo, H. H. Yoon, Y. H. Shin, C. H. Kim, K. Y. Song, H. G. Lee, E. K. Yang, K. H. Kim, and J. K. Park (2005), A comparison of lyophilized amniotic membrane with cryopreserved amniotic membrane for the reconstruction of rabbit corneal epithelium. Biotech and Biopro. Eng. 10, 262-269   DOI   ScienceOn
25 Aubock, J., E. Irschick E, N. Romani, P. Kompatscher, R. Hopfl, M. Herold, G. Schuler, M. Bauer, C. Huber, and P. Fritsch (1988), Transplantation 45, 730-737   DOI   ScienceOn
26 Kearney, J. N. (2001), Clinical evaluation of skin substitutes, Burns 27, 545-551   DOI   ScienceOn
27 Boyce, S. T , D. J. Christianson, and J. F. Hansbro ugh (1988), Structure of a collagen-GAG dermal skin substitute optimized for cultured human epidermal kerationcytes, J. Biomed. Mater. Res. 22, 939-957   DOI   ScienceOn
28 Pieper, J. S., A. Oosterhof, P. J. Dijkstra, J. H. Veerkamp, and T. H. Van Kuppevelt (1996), Preparation and characterization of porous crosslinked collagenous matrices containing bioavailable chondroitin sulphate , Biomaterials 20, 847-858   DOI   ScienceOn
29 Quinby W. C., H. C. Hoover, M. Scheflan, P. T. Walters, S. A. Slavin, and C. C. Bondoc (1982), Clinical trials of amniotic membranes in burn wound care, Plast. Reconstr. Surg. 70, 711-717   DOI   ScienceOn
30 Subrahmanyam , M. (1995), Amniotic membrane as a cover for microskin grafts, Br. J. Plast. Surg. 48, 477-478   DOI   ScienceOn
31 Kubo, K., and Y. Kuroyanagi (2003), Spongy matrix of hyaluronic acid and collagen as a cultured dermal substitute: evaluation in an animal test, Artif. Organs 6, 64-70   DOI
32 Basile, A. R. (1982), A comparative study of glycerinized and lyophilized porcine skin in dressings for third-degree burns, Plast. Reconstruct Surg. 69, 969-974   DOI   ScienceOn
33 Navsaria, H. A., S. R. Myers, I. M. Leigh, and I. A. McKay (1995), Culturing skin in vitro for wound therapy, TIBIOTECH. 13, 91-100   DOI   ScienceOn
34 Wainwright, D. J. (1995), Use of acellular allograft dermal matrix (AlIoDarm) in the management of full-thickness burns, Burns 21, 243-248   DOI   ScienceOn
35 Kim, J. S., J. C. Kim, B. K. Na, J. M. Jeong, and C. Y. Song (2000), Amniot ic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkari burn, Exp. Eye Res. 70, 329-337   DOI   ScienceOn
36 Dagalakis, N., J. Flink, P. Stas ikelis, J. F. Burke, and I. V. Yannas (1980), Design of an artificial skin III . Control of pore structure , J. Biomed. Mater. Res. 14, 511-528   DOI   ScienceOn
37 Seo Y. K., K. Y. Song, Y. J. Kim, and J. K. Park (2007), Wound healing effect of acellular artificial dermis containing extracellular matrix secreted by human skin fibroblast , Artif Organs 31, 509-520   DOI   ScienceOn
38 Madden, M. R., J. L. Finkelstein, L. Staiano-Coico, C. W. Goodwin, G. T. Shires, E. E. Nolan, and J. M. Hefton (1986), Grafting of cultured allogeneic epidermis on second- and third- degree burn wounds on 26 patients, J. Trauma. 26, 955-962   DOI   ScienceOn
39 Suzuki , S., K. Kawai, F. Ashoori , N. Morimoto, Y. Nishimura, and Y. Ikada (2000), Long-term follow-up study of artificial dermis composed of outer silicone layer and inner collagen sponge, Br. J. Plast. Surg. 53, 659-666   DOI   ScienceOn
40 Doillon, C. J., C. F. Whyne, S. Brandwein, and F. H. Silver (1986), Collagen-based wound dressing : Control of the pore structure and morphology . J. Biomed. Mater. Res. 20, 1219-1228   DOI
41 Hanbrough, J. F., M. L. Cooper, R. Cohen, R. Spielvogel, G. Greenleaf, R. L. Bartel, and G. Naughton (1992), Evaluation of a biodegradable matrix containing cultured human fibroblasts as a dermal replacement beneath meshed skin grafts on athymic mice. Surgery 111, 438-446
42 Horch, R. E., M. Debus, G. Wagner, and G. B. Stark (2006), Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis, Tissue Eng. 6, 53-67
43 Ward, D. J., J. P. Bennett, H. Burgos, and J. Fabre (1989), The heal ing of chronic venous leg ulcers with prepared human amnion, Br. J. Plast. Surg. 42, 463-467   DOI   ScienceOn
44 Caravaggi, C., R. De Giglio, C. Pritelli, M. Sornmaria, S. Dalla Noce, E. Faglia, M. Mantero, G. Clerici, P. Fratino, L. Dalla Paola, G. Mariani, R. Mingardi, and A. Morabito (2003), HYAFF 11 -based autologous dermal and epidermal grafts in the treatment of noninfected diabetic plantar and dorsal foot ulcers: a prospective, multicenter, controlled, randomized clinical trial, Diabetes Care 26, 2853-2859   DOI   ScienceOn
45 Ruszczak, Z., and R. A. Schwartz (2000) , Modem aspects of wound healing, Dermatol. Surg. 26, 219-229   DOI   ScienceOn
46 Hodde, J. (2002), Natually occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 8, 295-308   DOI   ScienceOn
47 Kremer, M., E. Lang , and A. C. Berger (2000 ), Evaluation of dermal-epidermal skin equivalents ('composite-skin') of huma n keratinocytes in a collagen-glycosaminoglycan matrix ($Integra^{TM}$ Artificial Skin), Br. J. Plast. Surg. 53, 459-465   DOI   ScienceOn
48 Kuroyanagi , Y., K. Kubo, S. Kagawa, H. Matsui, H. J. Kim, S. Numari , and Y. Mabuchi (2004), Establishment of banking system for allogeneic cultured dermal substitute, J. Artif. Organs 1, 13-21
49 Lee, J. H., Y. S. Cho, H. H. Kim and J. S. Lee (1998), Wound dressing, Biomaterials Res. 2, 180-191
50 Kuroyanagi, Y. N., Yamada, R. Yamashita, and E. Uchinurna (2001),Tissue-engineered product: allogenic cultured dermal substitute composed of spongy collagen with fibroblast. Artif. Organs 25, 180-186   DOI   ScienceOn
51 Kashiwa , N., O. Ito, T. Ueda, K. Kubo, H. Matsui, and Y. Kuroyanagi (2004), Treatment of full-thickness skin defect with concomitant grafting of 6-fold extended mesh auto-skin and allogeneic cultured dermal substitute, Artif. Organs 5, 444-450
52 Hussmann, J., R. C. Russell, J. O. Kucan, D. Hebebrand, T. Bradley, and H. U. Steinau (1994), Use of glycerolized human allog rafts as temporary and permanent cover in adult s and children, Burns 20, S61-65   DOI   ScienceOn
53 Murashita , T., Y. Nakayama , T. Hirano , and S. Ohashi (1997), Acceleration of granulation tissue ingrowth by hyaluronic acid in artificial skin, Br. J. Plast. Surg. 49, 58-63
54 Caplan, A. I. (2000), Tissue engineering designs for the future: New logics, old molecules , Tissue Eng. 6, 1-8   DOI   ScienceOn
55 Yannas, I. V., J. F. Burke, P. L. Gordon , C. Huang, and R. H. Rubenstein (1980), Design of an artificial skin III . Control of chemical composition, J. Biomed. Mater. Res. 14, 107-132   DOI   ScienceOn
56 Burke, J. F., I. V. Yannas, W. C. Quinby, C. C. Bondoc, and W. K. Jung (1981), Successful use of a physiologically acceptable artifical skin in the treatment of extensive burn injury, Ann. Surg. 194, 413-428   DOI   ScienceOn
57 Matsui, R., N. Okura, K. Osaki, J. Konishi, K. Ikegami, and M. Koide (1996), Histological evaluation of skin reconstruction using artificial dermis, Biomaterials 17, 995-1000   DOI   ScienceOn
58 Cooper, M. L., and J. F. Hansbrough (1991), Use of a composite skin graft composed of cultured human keratinocytes and fibroblasts and a collagen-GAG matrix to cover full-thickness wounds on athymic mice, Surgery 109, 198-207
59 Morimoto, N., Y. Saso, K. Tomihata, T Taira, Y. Takahashi, M. Ohta, and S. Suzuki (2005), Viability and function of autologous and allogeneic fibroblasts seeded in dermal substitutes after implantation, J. Surg. Res. 125, 56-67   DOI   ScienceOn
60 Yannas, I. V., and J. F. Burke (1980), Design of an artificial skin I . Basic design principles, J. Biomed. Mater. Res. 14, 65-81   DOI   ScienceOn
61 Kubo, K., and Y. Kuroyanagi (2004), Development of a cultured dermal substitute composed of a spongy matrix of hyaluronic acid and atelo-collagen combined with fibrob lasts : cryopreservation, Artif. Organs 2, 182-188
62 Galassi, G., P. Brun, G. Abatangelo, M. Radice, R. Cortivo, G. F. Zanon, P. Genovese , and G. Abatangelo (2000), In vitro reconstructed dermis implanted in human Wounds: degradation studies of the HA-based Supporting scaffold , Biomaterials 21, 2183-2191   DOI   ScienceOn
63 Doillon , C. J., and F. H. Silver (1986), Collagen-based wound dressing : Effect of hyaluronic acid and fibronectin on wound healing, Biomaterials 7, 3-8   DOI   ScienceOn
64 Tyszkiewicz, J. T., I. A. Uhrynowska-Tyszkiewicz, A. Kaminski and A. Dziedzic-Goclawska (1999), Amnion allografts prepared in the central tissue bank in warsaw, Ann. Transplant. 4, 85-90
65 Matsui, R., K. Osaki, J. Konishi, K. Ikegami, and M. Koide (1996), Evaluation of an artificial dermis full -thickness skin defect model in the rat, Biomaterials 17, 989-994   DOI   ScienceOn
66 Seo, Y. K., J. I. Ahn, D. H. Lee, S. Y. Kwon, D. H. Jung, Y. S. Park, K. Y. Song, E. K. Yang, Y. J. Kim, and J. K. Park (2004), The wound healing effects of human deepithelialized amniotic membrane with skin keratinocyte. Tissue Eng. Regen: Med 1, 178-183
67 Honavar, S. G., S. K. Bansal, V. S. Sangwan, and G. N. Rao (2000), Amniotic membrane transplantation for ocular surface reconstruction in Stevens-Johnson Syndrome, Ophthalmology 107, 975-979   DOI   ScienceOn
68 Horch, R. E., J. Kopp, J. Beier, and A. D. Bach (2005), Tissue engineering of cultured skin substitutes, J. Cell. Mol. 9, 592-608   DOI   ScienceOn
69 Badylak, S. F. (2007), The extracelular matrix as a biologic scaffold material, Biomaterials 28, 3587-3593   DOI   ScienceOn
70 Kubo, K., and Y. Kuroyanagi (2003), Characterization of a cultured dermal Substitute composed of a spongy matrix of hyaluronic acid and collagen comb ined with fibroblasts, J. Artif. Organs 6, 138-144
71 Phillips, T. J., J. Bhawon, I. M. Leigh, H. J. Baum, and B. A. Gilchrest (1990), Cultured epidermal autografts and allografts: a study of diffe rentiation and allograft survival, J. AM. Acad. Dermatol. 23, 189-198   DOI   ScienceOn