Browse > Article

Detection of C-Reactive Protein Using Direct-binding Quartz Crystal Microbalance Immunosensor  

Kim, N. (Food Nano-Biotechnology Research Center, Korea Food Research Institute)
Kim, D.K. (Food Nano-Biotechnology Research Center, Korea Food Research Institute)
Cho, V.J. (Food Nano-Biotechnology Research Center, Korea Food Research Institute)
Publication Information
KSBB Journal / v.22, no.6, 2007 , pp. 443-446 More about this Journal
Abstract
A prognostic indicator of coronary heart disease, C-reactive protein, was tried to be determined by a batch-type quartz crystal microbalance immunosensor. The sensor was operated by direct-binding mode and the optimum concentration for the corresponding antibody for immobilization was $50{\mu}g/ml$. The reaction buffer for the system was 0.1 M sodium phosphate (pH 7.0) and system operation was performed in the order of baseline stabilization, analyte addition and measurement, and regeneration of the sensor chip with 10 mM NaOH. When plotted in double-logarithmic scale, the sensor showed a linear detection range of 0.27-106.00 nM for rat C-reactive protein with the limit of detection of 0.53 nM. It also showed a good reusability.
Keywords
C-Reactive protein; quartz crystal microbalance; immunosensor; linearity; reusability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Parra, M. D., Tuomola, M., Cabezas-Herrera, J., and J. J. Ceron (2005), Use of a time-resolved immunofluorometric assay for determination of canine c-reactive protein concentrations in whole blood, Am. J. Vet. Res. 1, 62-66
2 Park, I.-S. and N. Kim (1998), Thiolated Salmonella antibody immobilization onto the gold surface of piezoelectric quartz crystal, Biosens. Bioelectron. 13, 1091-1097   DOI   ScienceOn
3 Babacan, S., Pivarnik, P., Letcher, S., and A. G. Rand (2000), Evaluation of antibody immobilization methods for piezoelectric biosensor application, Biosens. Bioelectron. 15, 615-621   DOI   ScienceOn
4 Pyun, J. C., Beutel, H., Meyer, J.-U., and H. H. Ruf (1998), Development of a biosensor for E. coli based on a flexural plate wave (FPW) transducer, Biosens. Bioelectron. 13, 839-845   DOI   ScienceOn
5 Rifai, N. and P. M. Ridker (2001), High-sensitivity C-reactive protein: a novel and promising marker of coronary heart disease, Clin. Chem. 47, 403-411
6 Kim, N., Park, I.-S., and D.-K. Kim (2004), Characteristics of a label-free piezoelectric immunosensor detecting Pseudomonas aeruginosa, Sens. Actuators B: Chem. 100, 432-438   DOI   ScienceOn
7 Clarke, J. L., Anderson, J. L., Carlquist, J. F., Roberts, R. F., Horne, B. D., Bair, T. L., Kolek, M. J., Mower, C. P., Crane, A. M., Roberts, W. L., and J. B. Muhlestein (2005), Comparison of differing c-reactive protein assay methods and their impact on cardiovascular risk assessment, Am. J. Cardiol. 1, 155-158
8 Park, I.-S. and N. Kim (1999), Rapid detection of Salmonella spp. by antibody immobilization with gold-protein A complex, Korean J. Food Sci. Technol. 31, 1-6
9 Weinhold, B. and U. Rüther (1997), Interleukin-6-dependent and independent regulation of the human C-reactive protein gene, Biochem. J. 327, 425-429   DOI
10 Meyer, M. H. F., Hartmann, M., and M. Keusgen (2006), SPR-based immunosensor for the CRP detection- A new method to detect a well known protein, Biosens. Bioelectron. 21, 1987-1990   DOI   ScienceOn
11 Wolf, M., Juncker, D., Michel, B., Hunziker, P., and D. Emmanuel (2004), Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks, Biosens. Bioelectron. 19, 1193-1202   DOI   ScienceOn
12 Meyer, M. H. F., Hartmann, M., Krause, H.-J., Blankenstein, G., Mueller-Chorus, B., Oster, J., Miethe, P., and M. Keusgen (2007), CRP determination based on a novel magnetic biosensor, Biosens. Bioelectron. 22, 973-979   DOI   ScienceOn
13 G. Sauerbrey (1959), Verwendung von Schwingquarzen zur Wagung dünner Schichten und zur Mikrowagung, Z. Phys. 155, 206-222   DOI
14 Gabay, C. and I. N. Kushner (1999), Acute-phase proteins and other systemic responses to inflammation, New Engl. J. Med. 340, 448-454   DOI   ScienceOn
15 Martin, S. P., Lynch, J. M., and S. M. Reddy (2002), Optimisation of the enzyme-based determination of hydrogen peroxide using the quartz crystal microbalance, Biosens. Bioelectron. 17, 735-739   DOI   ScienceOn
16 Sapsford, K. E., Charles, P. T., Patterson Jr., C. H., and F. S. Ligler (2002), Demonstration of four immunoassay formats using the array biosensor, Anal. Chem. 74, 1061-1068   DOI   ScienceOn
17 Dominichi, R., Luraschi, P., and C. Franzini (2004), Measurement of c-reactive protein: Two high sensitivity methods compared, J. Clin. Lab. Anal. 18, 280-284   DOI   ScienceOn
18 Vikholm-Lundin, I. and W. M. Albers (2006), Site-directed immobilisation of antibody fragments for detection of C-reactive protein, Biosens. Bioelectron. 21, 1141-1148   DOI   ScienceOn
19 Nicolle, C., Cardinault, N., Gueux, E., Jaffrelo, L., Rock, E., Mazur, A., Amouroux, P., and C. Rémésy (2004), Health effect of vegetable-based diet: lettuce consumption improves cholesterol metabolism and antioxidant status in the rat, Clin. Nutr. 23, 605-614   DOI   ScienceOn
20 Kim, N., Park, I.-S., and D.-K. Kim (2007), High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor, Biosens. Bioelectron. 22, 1593-1599   DOI   ScienceOn
21 Minunni, M. and M. Mascini (2000), A piezoelectric biosensor as a direct affinity sensor, In Optical Sensors and Microsystems. New Concepts, Materials, Technologies, S. Martellucci, A. N. Chester, and A. G. Mignani, Eds., p. 143, Kluwer Academic Publishers/Plenum Press, New York