Browse > Article

Characterization of Symbiotic Bacteria from Entomopathogenic Nematode  

박선호 (계명대학교 공학부)
김지연 ((주)바이코시스 부설연구소)
Publication Information
KSBB Journal / v.17, no.3, 2002 , pp. 276-282 More about this Journal
Abstract
Symbiotic bacteria with highly effective insecticidal activities were isolated and compared with their physiological characteristics from seven species of entomopathogenic nematodes belong to Steinernamatidae and Heterorhabditidae sp., and three of them were identified as Xenorhabdus nematophilus. Culture characteristics, insecticidal activities, pretense activities and fatty acid contents of various symbiotic bactierial isolates were also examined. In the case of cell growth and insecticidal activity, XR-PC and XR-MK were superior to other species when cultured in vitro. The insecticidal activity were highest at the early exponential growth phase, and gradually decreased with time. The protease activity of XR-DR was remarkable compared to other species. In the case of HE-HY, however the pretense activity increased in parallel with cell growth. Interestingly, the fatty acid patterns of Xenorhabdus nematophilus isolated from different emtomopathogenic nematode, showed remarkable differences in their contents of 12:0, 14:0, 16:1 cia 5 and 17:0 cyclo and hydroxy and branch factty acids were varied from 2% to 15% among total fatty acid contents.
Keywords
Xenorhabdus nematophilus; insecticidal activity; protease; fatty acids;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dunphy, G. B. and J. M. Webster (1998), Virulence mechanism of Heterorhabditis heliothidi and its bacterial associate, Xenorhabdus luminescens, in non-immune larvae of the dauer wax moth, Galleria mellonella, Int. J. Parasitol. 18, 729-737   DOI   ScienceOn
2 Hominick, W. M. (1990), Entomopathogenic Rhabditid nematodes and pest control, Parasitology Today, 6, 148-152   DOI   ScienceOn
3 Richardson, W. H., Schmidt, T. M. and K. H. Nealson (1988), Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens, Appl. Environ. Microbiol. 54, 1602-1605
4 Bedding, R. A. and A. S. Molyneux (1982), Penetration of insect cuticle by infective juveniles of Heterorhabditis spp.(Heterorhabditidae: Nematoda), Nematologica, 28, 354-359   DOI
5 Hatab, M. A., Gaugler, R. and R. Ehlers (1998), Influence of culture method on Steinernema glaseri lipids, J. Parasitology, 84, 215-221   DOI   ScienceOn
6 Yu, Y. S. (2001), Isolation and Characterization of a Bacterial Symbiont from Entomopathogeinc Nematodes, Ph.D. Dissertation, Dept. of Chemical Engineering, Keimyung University
7 Dunn, P. E. and D. R. Drake (1983), Fate of bacteria injected into nature and immunized larvae of the tobacco hornwood, Manduca sexta, J. Invest. Pathol. 41, 77-85   DOI
8 Mcinerney, B. V., Gregson, R. O., Lacey, M., Akhurst, R. J., Lyons, G. R., Rhodes, S. H., Smith, D. R., Lutz, J. M. E. and A. H. White (1991), Biologically active metabolites from Xenorhabdus spp., 1. Dithiolopyrrolone derivatives with antibiotic activity, J. Natural Products, 54, 774-784   DOI
9 Akhurst, R. J. (1980), Morphological and functional dimorphism in Xenorhabdus spp. bacteria symbiotically associated with the insect pathogenic nematodes Neoapletana and Heterorhabditis, J. Gen. Microbiol. 121, 303-309
10 Ensign, J. C., Bowen, D. J. and S. B. Bintrim (1990), Crystalline inclusion proteins and an insecticidal toxin of Xenorhabdus luminescens strain NC-19, Proceedings and Abstracts, 5th International Colloquium on Invertebrate Pathology and Microbial Control, Adelaidde, 218-221
11 Schmidt, T. M., Kopecky, K. and K. H. Nealson (1989), Bioluminescence of the insect pathogen Xenorhabdus luminescens, Appl. Environ. Microbiol. 55, 2607-2612
12 Hatab, M. A. and R. Gaugler (1997), Growth-mediated variations in fatty acids of Xenorhabdus spp., J. Appl. Microbiol. 82, 351-358   DOI   ScienceOn
13 Osterhout, G. J., Shull, V. H. and J. D. Dick (1991), Identification of clinical isolates of gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system, J. Clin. Microbiol. 29, 1822-1830
14 Boe, B. and J. Gjerde (1980), Fatty acid patterns in the classification of some representatives of the families Enterobacteriaceae and Vibrionaceae, J. Gen. Microbiol. 116, 41-49   DOI
15 Janse, J. D. and P. H. Smits (1990), Whole cell fatty acid patterns of Xenorhabdus species, Lett. Appl. Microbioi. 10, 131-135 (1990)   DOI
16 Boemare, N. and R. J. Akhurst (1988), Biochemical and physiological characterization of colony form variants in Xenorhabdus spp.(Enterobacteriaceae), J. Gen. Microbiol. 134, 751-761   DOI
17 Akhurst, R. J. and G. Dunphy (1993), Tripartite interactions between symbioticially associated entomopathogenic bacteria nematodes, and their insect hosts, In parasites and pathogens of insects, N. Beckage, S. Thompson, and B. Federich, Eds., Academic Press, New York
18 Boemare, N., Laumond, C. and J. Luciani (1982), Occurrence of toxicogenesis by the entomogenous germ free nematode Neoaplectana carpocapsae Weiser in the germ free insect Galleria mellonella L, Comptes Rendus Academy Science Series III: Life Sciences, 295, 543-546
19 Schmidt, T. M., Bleakley, B. and K. H. Nealson (1988), Characterization of an extracellular protease from the insect pathogen Xenorhabdus luminescens, Appl. Environ. Microbiol. 54, 2793-2797
20 Ryu, K. G., Bae, J. S. and S. H. Park (1999), Extracellular protease production from Xenorhabdus nematophilus, a symbiotic bacterium of entomopathogenic nematodes, Biotechnol. Bioproc. Eng. 4, 147-150   DOI
21 Hurlber, R. E., Xu, J. and C. L. Small (1994), Colonial and cellular polymorphism in Xenorhabdus luminescens, Appl. Environ. Microbiol., 55, 1136-1143
22 Klein, M. G. (1990), Efficacy against Soil Inhabiting Insect Pests, In Entomopathogenic Nematodes in Biological Control, R. Gaugler and H. K. Kaya, Eds., CRC Press, Florida