Browse > Article
http://dx.doi.org/10.5322/JESI.2022.31.10.833

Ammonia Adsorption Capacity and Breakthrough Curve of Zeolitic Materials Synthesized from Coal Fly Ash  

Park, Jong-Won (Department of Environmental Adminstration, Catholic University of Pusan)
Lee, Chang-Han (Department of Environmental Adminstration, Catholic University of Pusan)
Publication Information
Journal of Environmental Science International / v.31, no.10, 2022 , pp. 833-844 More about this Journal
Abstract
A zeolite material with a Si/Al molar ratio of 1.2 was synthesized by changing the NaOH/CFA ratio of coal fly ash (CFA) via a fusion/hydrothermal reaction in the HD thermal power plant. The change in the crystal structure of the zeolite was confirmed using XRD and SEM, and the ammonia adsorption capacities of the synthesized zeolitic materials and a commercial zeolite (Na-A zeolite) were analyzed via an ammonia temperature-programmed desorption (NH3-TPD) process. The SEM and XRD results revealed out the zeolitic materials from the coal fly ash maintained a hexagonal Linde-type crystal structure similar to that of Na-A zeolite, but the crystallinity of the synthesized zeolitic material was reduced due to impurities. The NH3 adsorption capacity, determined from the NH3-TPD analysis of was 1.122 mmol/g of the synthesized zeolitic material, which was lower than the NH3 adsorption capacity of the Na-A zeolite.
Keywords
Ammonia; Adsorption; Breakthrough curve; Coal fly ash; Zeolitic material;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Joshi, U. D., Joshi, P. N., Tamhankar, S. S., Joshi, V. V., Rode, C. V., Shiralkar, V. P., 2003, Effect of nonframework cations and crystallinity on the basicity of NaX zeolites, Appl. Catal. A, 239, 209-220.   DOI
2 Machado, N. R. C. F., Miotto, D. M. M., 2005, Synthesis of Na-A and -X zeolites from oil shale ash, Fuel, 84(18), 2289-2294.   DOI
3 Park, J. W., Ahn, K. H., Lee, W. K., Lee, C. H., 2019, Crystallization properties of zeolite A synthesized from coal fly ash using a fusion/hydrothermal method, Mol. Cryst. Liq. Cryst., 687(1), 89-96.   DOI
4 Murayama, N., Yamamoto, H., Shibata, J., 2002, Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction, Int. J. Miner. Process, 64(1), 1-17.   DOI
5 Kim, S. S., Lee, C. H., Park, S. W., 2010, Adsorption analysis of VOCs of zeolite synthesized from coal fly ash in a fixed-bed adsorber, Korean Chem. Eng. Res., 48(6), 784-790.
6 Ha, J. C., Song, Y. J., 2015, An Investigation of awareness on the Fukushima nuclear accident and radioactive contamination, J. Rad. Prot. Res., 41(1), 7-14.
7 Jorgensen, S. E., Libor, O., Lea Graber, K., Barkacs, K., 1976, Ammonia removal by use of clinoptilolite, Water Res., 10, 213-224.   DOI
8 Khabzina, Y., Farrusseng, D., 2018, Unravelling ammonia adsorption mechanisms of adsorbents in humid conditions, Microporous Mesoporous Mater., 265, 143-148.   DOI
9 El-Kamash, A. M., 2008, Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations, J. Hazard. Mater., 151(2-3), 432-445.   DOI
10 Lee, H. D., Kang, D. J., Lee, M. H., Kang, D. H., Oh, K. J., 2012, Removal efficiency of the deodorization equipment and characteristics of malodor during the process in co-treatment of sewage and food waste of Su-young wastewater treatment plant in Busan, Clean Technology, 18(4), 379-389.   DOI
11 Wang, C. F., Li, J. S., Wang, L. J., Sun, X. Y., 2008, Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method, J. Hazard. Mater., 155(1-2), 58-64.   DOI
12 Lin, L., Lei, Z., Wang, L., Liu, X., Zhang, Y., Wan, C., Lee, D. J., Tay, J. H., 2013, Adsortion mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites, Sep. Purif. Technol., 103, 15-20.   DOI
13 Park, J. W., Seo, Y. J., Ryu, S. H., Kim, S. D., 2017, Ammonia adsorption capacity of zeolite X with different cations, Appl. Chem. Eng., 28(3), 355-359.
14 Sandomierski, M., Buchwald, Z., Koczorowski, W., Voelkela, A., 2019, Calcium forms of zeolites A and X as fillers in dental restroative materials with remineralizing potential, Micropor. Mesopor. Mat., 294, 109899.
15 Benaliouche, F., Boucheffa, Y., Ayrault, P., Mignard, S., Magnoux, P., 2008, NH3-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag and Cu-exchanged X zeolites, Microporous Mesoporous Mater., 111, 80-88.   DOI
16 Depla, A., Verheyen, E., Veyfeyken, A., Gobechiya, E., Hartmana, R., Schaefer, R., Martens, J. A., Kirschhock, C. E. A., 2011, Zeolites X and A crystallization compared by simultaneous UV/VIS-Raman and X-ray diffraction, Phys. Chem. Chem. Phys., 13, 13730-13737.   DOI
17 Goncalves, M., Sanchez-Garcia, L., Oliveira Jardim, E. D., Silvestre-Albero, J., Rodriguez-Reinoso, F., 2011, Ammonia removal using activated carbons: Effect of the surface chemistry in dry and moist conditions, Environ. Sci. Technol., 45(24), 10605-10610.   DOI
18 Huang, C. C., Li, H. S., Chen, C. H., 2008, Effect of surface acidic oxides of activated carbon on adsorption of ammonia, J. Hazard. Mater., 159(2-3), 523-527.   DOI
19 Bernal, M. P., Lopez-Real, J. M., 1993, Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials, Bioresour. Technol., 43, 27-33.   DOI
20 Huang, C. C., Chen, H. M., Chen, C. H., Huang, J. C., 2010, Effect of surface oxides on hydrogen storage of activated carbon, Sep. Purif. Technol., 70(3), 291-295.   DOI
21 KOSIS (Korean statistical information service), 2020, https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1339.
22 Choi, J. H., Lee, C. H., 2019, Adsorption and desorption characteristics of Sr, Cs, and Na ions with Na-A zeolite synthesized from coal fly ash in low-alkali condition, J. Environ. Sci. Int., 28(6), 561-570.   DOI
23 Kim, C. G., 2016, Removal of ammonium and nitrate nitrogens from wastewater using zeolite. J. Korea Org. Resour. Recycl. Assoc., 24, 59-63.
24 Kim, S. S., Lee, C. H., 2012, Adsorption of SO2 by zeolite synthesized from coal fly ash, J. Environ. Sci. Int., 21(6), 687-694.   DOI
25 Kim, N. H., Park, K. S., Lee, S. H., Park, S. Y., Kim, D. S., Lee, K. S., Paik, K. J., Moon, Y. W., 2011, A Study on the examination of odor substances generated from the painting, the casting the ribber manufacturing, and the used oil refining facilities in Gwang-ju hanam industrial complex, Korean Journal of Odor Research and Engineering, 10(2), 53-61.
26 Lee, C. H., 2019, Zeolitification characteristics of coal fly ash by amount of Na2CO3 using the fusion/hydrothermal method, J. Environ. Sci. Int., 28(6), 553-559.   DOI
27 Lee, C. H., Park, J. M., Lee, M. G., 2014, Adsorption charateristics of Sr(II) and Cs(I) ions by zeolite synthesized from coal fly ash, J. Environ. Sci. Int., 23(12), 1987-1998.   DOI
28 Munthali, M. W., Johan, E., Aono, H., Matsue, N., 2015, Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination, J. Asian Cera. Soc., 3(3), 245-250.   DOI
29 Pebalan, R. T., Bertetti, F. P., 2001, Cation-exchange properties of nature zeolites, Geochemical Society, 435-518.
30 Oktavitri, N. I., Purnobasuki, H., Kuncoro, E. P., Purnamasari, I., 2017, Ammonia removal using coconut shell based adsorbent: Effect of carbonization duration and contact time, IPTEK Journal of Proceedings Series, 3(4), 26-32.
31 Rieth, A. J., Dinca, M., 2018, Controlled gas uptake in metal-organic frameworks with record ammonia sorption, J. Am. Chem. Soc., 140(9), 3461-3466.   DOI
32 Sherry, H. S., Walton, H. F., 1975, The ion exchange properties of zeolites, J. Phys. Chem., 71, 1457.   DOI
33 Somy, A., Mehrnia, M. R., Amrei, H. D., Ghanizadeh, A., Safari, M., 2009, Adsorption of carbon dioxide using impregnated activated carbon promoted by zinc, Int. J. Greenhouse Gas Control, 3(3), 249-254.   DOI
34 Yang, X., Wu, X., Hao, H., He, Z., 2008, Mechanisms and assessment of water eutrophication, J. Zhejiang Univ. Sci. B, 9, 197-209.   DOI
35 Lee, C. H., Kam, S. K., Lee, M. G., 2017, Removal characteristics of Sr ion by Na-A zeolite synthesized using coal fly ash generated from a thermal power plant, J. Environ. Sci. Int., 26(3), 363-371.   DOI
36 Bandosz, T. J., Petit, C., 2009, On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds, J. Colloid Interface Sci., 338(2), 329-345.   DOI
37 Carlos, A. R., Williams, C. D., Clive, L. R., 2009, A Comparative study of two methods for the synthesis of fly ash-based sodium and potassium type zeolites, Fuel, 88(8), 1403-1416.   DOI
38 Erten-Kaya, Y., Cakicioglu-Ozkan, F., 2012, Effect of ultrasound on the kinetics of cation exchange in NaX zeolite, Ultrason. Sonochem., 19(3), 701-706.   DOI