Browse > Article
http://dx.doi.org/10.5322/JESI.2020.29.1.95

Application of Nanoroll-Type Ag/g-C3N4 for Selective Conversion of Toxic Nitrobenzene to Industrially-Valuable Aminobenzene  

Devaraji, Perumal (Department of Environmental Engineering, Kyungpook National University)
Jo, Wan-Kuen (Department of Environmental Engineering, Kyungpook National University)
Publication Information
Journal of Environmental Science International / v.29, no.1, 2020 , pp. 95-108 More about this Journal
Abstract
Silver nanoparticles were loaded onto g-C3N4 (CN) with a nanoroll-type morphology (Ag/CN) synthesized using a co-polymerization method for highly selective conversion of toxic nitrobenzene to industrially-valuable aminobenzene. Scanning electron microscopy and high-resolution transmission electron microscopy (HRTEM) images of Ag/CN revealed the generation of the nanoroll-type morphology of CN. Additionally, HRTEM analysis provided direct evidence of the generation of a Schottky barrier between Ag and CN in the Ag/CN nanohybrid. Photoluminescence analysis and photocurrent measurements suggested that the introduction of Ag into CN could minimize charge recombination rates, enhancing the mobility of electrons and holes to the surface of the photocatalyst. Compared to pristine CN, Ag/CN displayed much higher ability in the photocatalytic reduction of nitrobenzene to aminobenzene, underscoring the importance of Ag deposition on CN. The enhanced photocatalytic performance and photocurrent generation were primarily ascribed to the Schottky junction formed at the Ag/CN interface, greater visible-light absorption efficiency, and improved charge separation associated with the nanoroll morphology of CN. Ag would act as an electron sink/trapping center, enhancing the charge separation, and also serve as a good co-catalyst. Overall, the synergistic effects of these features of Ag/CN improved the photocatalytic conversion of nitrobenzene to aminobenzene.
Keywords
Toxic nitrobenzene; Industrially-valuable aminobenzene; Schottky barrier; Nanoroll-type morphology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Roy, P., Periasamy, A. P., Liang, C. T., Chang, H. T., 2013, Synthesis of graphene-ZnO-Au nanocomposites for efficient photocatalytic reduction of nitrobenzene, Environ. Sci. Technol., 47, 6688-6695.   DOI
2 Sathu, N. K., Devaraji, P., Gopinath, C. S., 2016, Green leaf to inorganic leaf: a case study of ZnO, J. Nanosci. Nanotechnol., 16, 9203-9208.   DOI
3 Shiraishi, Y., Kanazawa, S., Sugano, Y., Tsukamoto, D., Sakamoto, H., Ichikawa, S., Hirai, T., 2014, Highly selective production of hydrogen peroxide on graphitic carbon nitride ($gC_3N_4$) photocatalyst activated by visible light, ACS Catal., 4, 774-780.   DOI
4 Tada, H., Ishida, T., Takao, A., Ito, S., Mukhopadhyay, S., Akita, T., Tanaka, K., Kobayashi, H., 2005, Kinetic and DFT studies on the $Ag/TiO_2$‐photocatalyzed selective reduction of nitrobenzene to aminobenzene, Chemphyschem, 6, 1537-1543.   DOI
5 Tahir, M., Cao, C., Mahmood, N., Butt, F. K., Mahmood, A., Idrees, F., Hussain, S., Tanveer, M., Ali, Z., Aslam, I. 2014, Multifunctional $gC_3N_4$ nanofibers: a template -free fabrication and enhanced optical, electrochemical, and photocatalyst properties, ACS Appl. Mater. Inter., 6, 1258-1265.   DOI
6 Tanaka, A., Nishino, Y., Sakaguchi, S., Yoshikawa, T., Imamura, K., Hashimoto, K., Kominami, H., 2013, Functionalization of a plasmonic Au/$TiO_2$ photocatalyst with an Ag co-catalyst for quantitative reduction of nitrobenzene to aminobenzene in 2-propanol suspensions under irradiation of visible light, Chem. Commun., 49, 2551-2553.   DOI
7 Toyao, T., Saito, M., Horiuchi, Y., Mochizuki, K., Iwata, M., Higashimura, H., Matsuoka, M., 2013, Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal-organic framework photocatalyst, Catal. Sci. Technol., 3, 2092-2097.   DOI
8 Yang, Z., Xu, X., Liang, X., Lei, C., Cui, Y., Wu, W., Yang, Y., Zhang, Z., Lei, Z., 2017, Construction of heterostructured MIL-125/Ag/$g-C_3N_4$ nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions, Appl. Catal. B, 205, 42-54.   DOI
9 Verma, S., Baig, R. B. N., Nadagouda, M. N., Varma, R. S., 2017, Hydroxylation of benzene via-C-H activation using bimetallic $4CuAg@g-C_3N_4$, ACS Sustainable Chem. Eng., 5 3637-3640.   DOI
10 Xiao, Q., Sarina, S., Waclawik, E. R., Jia, J., Chang, J., Riches, J. D., Wu, H., Zheng, Z., Zhu, H., 2016, Alloying gold with copper makes for a highly selective visible-light photocatalyst for the reduction of nitroaromatics to aminobenzenes, ACS Catal., 6, 1744-1753.   DOI
11 Zhang, Y., Liu, J., Wu, G., Chen, W., 2012, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale, 4, 5300-5303.   DOI
12 Zhu, H., Ke, X., Yang, X., Sarina, S., Liu, H., 2010, Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light, Angew. Chem. Int. Ed., 49, 9657-9661.   DOI
13 An, J., Yang, Q., Luo, Q., Li, X., Yin, R., Liu, F., Wang, D., 2016, Preparation and characterization of silver/g-carbon nitride/chitosan nanocomposite with hotocatalytic activity, Integr. Ferroelectr., 180, 52-60.
14 Bai, X., Wang, L., Zong, R., Zhu, Y., 2013, Photocatalytic activity enhanced via gC3N4 nanoplates to nanorods, J. Phys. Chem. C, 117, 9952-9961.   DOI
15 Bharad, P. A., Sivaranjani, K., Gopinath, C. S., 2015, A Rational approach towards enhancing solar water splitting: a case study of Au-RGO/N-RGO-$TiO_2$, Nanoscale, 7, 11206-11215.   DOI
16 Devaraji, P., Gopinath, C. S., 2018, Pt -$CdS/g-C_3N_4$- (Au/$TiO_2$): Electronically integrated nanocomposite for solar hydrogen generation, Int. J. Hydrogen Energ., 43, 601-613.   DOI
17 Bu, Y., Chen, Z., Li, W., 2014, Using electrochemical methods to study the promotion mechanism of the photoelectric conversion performance of Ag-modified mesoporous $g-C_3N_4$ heterojunction material, Appl. Catal. B, 144, 622-630.   DOI
18 Chaiseeda, K., Nishimura, S., Ebitani, K., 2017, Gold nanoparticles supported on alumina as a catalyst for surface plasmon-enhanced selective reductions of nitrobenzene, ACS Omega, 2, 7066-7070.   DOI
19 Chen, Z., Liu, S., Yang, M. Q., Xu, Y. J., 2013, Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water, ACS Appl. Mater. Inter., 5, 4309-4319.   DOI
20 Dai, X., Xie, M., Meng, S., Fu, X., Chen, X., 2014, Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aminobenzene using $CdS/g-C_3N_4$ photocatalyst under visible light irradiation, Appl. Catal. B, 158-159, 382-390.   DOI
21 Devaraji, P., Jo, W. K., 2018, Two‐dimensional mixed phase leaf‐$Ti_{1-x}Cu_xO_2$ sheets synthesized based on a natural leaf template for increased photocatalytic H2 evolution, Appl. Catal. A, 565, 1-12.   DOI
22 Devaraji, P., Mapa, M., Hakkeem, H. A., Sudhakar, V., Krishnamoorthy, K., Gopinath, C. S., 2017, ZnO-ZnS heterojunction: A potential candidate for optoelectronics applications and mineralization of endocrine disruptors in direct sunlight, ACS Omega, 2, 6768-6781.   DOI
23 Devaraji, P., Sathu, N. K., Gopinath, C. S., 2014, Ambient oxidation of benzene to phenol by photocatalysis on Au/$Ti_{0.98}V_{0.02}O_2$: role of holes, ACS Catal., 4, 2844-2853.   DOI
24 Guo, X., Zhang, G., Cui, H., Wei, N., Song, X., Li, J., Tian, J., 2017, Porous $TiB_2$-TiC/$TiO_2$ heterostructures: synthesis and enhanced photocatalytic properties from nanosheets to sweetened rolls, Appl. Catal. B, 217, 12-20.   DOI
25 European Chemicals Agency, Committee for Risk Assessment, Nitrobenzene ECHA/RAC/CLH-0-0000 002350-87-01/A1, February 3, 2012.
26 Ge, L., Han, C., Liu, J., Li, Y., 2011, Enhanced visible light photocatalytic activity of novel polymeric $CdS/g-C_3N_4$ loaded with Ag nanoparticles, Appl. Catal. A, 409-410, 215-222.   DOI
27 Gholap, S. G., Badiger, M. V., Gopinath, C. S., 2005, Molecular origins of wettability of hydrophobic poly (vinylidene fluoride) microporous membranes on poly (vinyl alcohol) adsorption: surface and interface analysis by XPS, J Phys. Chem. C, 109, 13941-13947.   DOI
28 Grirrane, A., Corma, A., Garcia, H., 2008, Gold catalyzed synthesis of aromatic azo compounds from aminobenzenes and nitroaromatics, Science, 322, 1661-1664.   DOI
29 Guo, S., Deng, Z., Li, M., Jiang, B., Tian, C., Pan, Q., Fu, H., 2016, Phosphorous-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution, Angew. Chem. Int. Edit., 55, 1830-1834.   DOI
30 Han, Q., Wang, B., Gao, J., Cheng, Z., Zhao, Y., Zhang, Z., Qu, L., 2016, Atomically thin mesoporous nanomesh of graphitic $C_3N_4$ for high-efficiency photocatalytic hydrogen evolution, ACS Nano, 10, 2745-2751.   DOI
31 Ho, W., Zhang, Z., Lin, W., Huang, S., Zhang, X., Wang, X., Huang, Y., 2015, Copolymerization with 2,4,6-triaminopyrimidine for the roll-up the layer structure, tunable electronic properties, and photocatalysis of $CdS/gC_3N_4$, ACS Appl. Mater. Inter., 7, 5497-5505.   DOI
32 Li, H., Gao, Y., Wu, X., Lee, P. H., Shih, K., 2017, Fabrication of heterostructured $g-C_3N_4/Ag-TiO_2$ hybrid photocatalyst with enhanced performance in photocatalytic conversion of $CO_2$ under simulated sunlight irradiation, Appl, Surf. Sci., 402, 198-207.   DOI
33 Jin, Z., Zhang, Q., Yuana, S., Ohno, T., 2015, Synthesis high specific surface area nanotube $g-C_3N_4$ with two-step condensation treatment of melamine to enhance photocatalysis properties, RSC Adv., 5, 4026-4029.   DOI
34 Ke, X., Zhang, X., Zhao, J., Sarina, S., Barry, J., Zhu, H., 2013, Selective reductions using visible light photocatalysts of supported gold nanoparticles, Green Chem., 15, 236-244.   DOI
35 Khan, M. E., Han, T. H., Khan, M. M., Karim, M. R., Cho, M. H., 2018, Environmentally sustainable fabrication of $Ag@g-C_3N_4$ nanostructures and their multi -functional efficacy as antibacterial agents and photocatalysts, ACS Appl. Nano Mater., 1, 2912-2922.   DOI
36 Kimura, K., Naya, S. I., Jin-nouchi, Y., Tada, H., 2012, $TiO_2$ crystal form-dependence of the Au/$TiO_2$ plasmon photocatalyst's activity, J. Phys. Chem. C, 116, 7111-7117.   DOI
37 Kumar, S., Surendar, T., Baruah, A., Shanker, V., 2013, Synthesis of a novel and stable $g-C_3N_4-Ag_3PO_4$ hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation, J. Mater. Chem. A, 1, 5333-5340.   DOI
38 Patra, K. K., Bhuskute, B. D., Gopinath, C. S., 2017, Possibly scalable solar hydrogen generation with quasi-artificial leaf approach, Sci. Rep., 7, 1-9.   DOI
39 Patra, K. K., Gopinath, C. S., 2017, Harnessing visible-light and limited near-IR photons through plasmon effect of gold nanorod with $AgTiO_2$, J. Phys. Chem. C, 122, 1206-1214.   DOI