Browse > Article
http://dx.doi.org/10.5322/JESI.2019.28.10.813

Inorganic Nutrient Inputs from Precipitation, Throughfall, and Stemflow in Pinus densiflora and Quercus mongolica Stands in an Urban Forest Ecosystem  

Kim, Kee Dae (Department of Environmental Education, Korea National University of Education)
Publication Information
Journal of Environmental Science International / v.28, no.10, 2019 , pp. 813-829 More about this Journal
Abstract
We measured the amount of precipitation, stemflow, and throughfall and concentrations of nine major inorganic nutrients ($H^+$, ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$) to investigate the nutrient inputs into soil from precipitation in Pinus densiflora and Quercus mongolica stands from September 2015 to August 2016. The precipitation inputs of $H^+$, ${NH_4}^+$, $Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$, $Cl^-$, ${NO_3}^-$, and ${SO_4}^{2-}$ into soil were 0.170, 15.124, 42.227, 19.218, 14.050, 15.887, 22.391, 5.431, and $129.440kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, respectively. The P. densiflora stemflow inputs were 0.008, 0.784, 1.652, 1.044, 0.476, 0.651, 1.509, 0.278, and $9.098kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, and those for Q. mongolica were 0.008, 0.684, 2.429, 2.417, 2.941, 1.398, 2.407, 0.436, and $13.504kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, respectively. The P. densiflora throughfall inputs were 0.042, 21.518, 52.207 27.694, 20.060, 24.049, 37.229, 10.241, and $153.790kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, and those for Q. mongolica were 0.032, 15.068, 42.834, 21.219, 20.294, 20.237, 24.288, 5.647, and $119.134kg{\cdot}ha^{-1}{\cdot}yr^{-1}$, respectively. Of the total throughfall flux (i.e., stemflow + throughfall flux) of the nine ions for the two species, ${SO_4}^{2-}$ had the greatest total throughfall flux and $H^+$ had the lowest. The net throughfall fluxes of the ions for the two species had various correlations with the precedent dry period, rainfall intensity, rainfall amount, and pH of precipitation. The soil pH under the Q. mongolica canopy (4.88) was higher than that under the P. densiflora canopy (4.34). The difference in the soil pH between the two stands was significant (P < 0.01), but the difference in soil pH by the distance from the stems of the two species was not (P > 0.01). This study shows the enrichments of inorganic nutrients by two representative urban forests in temperate regions and the roles of urban forests during rainfall events in a year.
Keywords
Inorganic nutrient; Net throughfall flux; pH; Pinus densiflora; Precedent dry period; Quercus mongolica; Rainfall intensity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alenas, I., Skarby., L., 1988, Throughfall of plant nutrients in relation to crown thinning in a Swedish coniferous forest, Water Air Soil Poll., 38, 223-237.   DOI
2 Allen, S. E., Grimshaw, H. M., Parkinson, J. A., Christopher, Q., 1974, Chemical analysis of ecological materials. Blackwell scientific publications, 25.
3 Jakucs, P., 1985, Ecology of an oak forest in Hungary, AKADEMIAI KIADO, Budapest, 406.
4 Jorge, L. F., Lugo, A. E., 1985, Ecosystem dynamics of a subtropical floodplain forest, Ecol. Monogr., 55, 351-369.   DOI
5 Kil, B. S., Yim, Y. J., 1983, Allelopathic dffects of Pinus densiflora on undergrowth of red pine forest, J. Chem. Ecol., 9, 1135-1151.   DOI
6 Bidleman, T. F., 1988, Atmospheric processes: wet and dry deposition of organic compounds are controlled by their vapor-particle partitioning, Environ. Sci. Technol., 22, 361-367.   DOI
7 Andersson, T., 1991, Influence of stemflow and throughfall from common oak (Quercus robur) on soil chemistry and vegetation patterns, Can. J. For. Res., 21, 917.   DOI
8 APHA, 1989, Standard methods for the examination of water and wastewater, APHA, Baltimore.
9 Bache, B. W., 1980, Effects of acid precipitation on terrestrial ecosystems, NATO conference series 1, 183.
10 Bormann, F. H., Likens, G. E., 1967, Nutrient Cycling, Science, 155, 424-429.   DOI
11 Bredemeier, 1988, Forest canopy transformation of atmospheric deposition, Water Air Soil Poll., 40, 136-137.
12 Cho, K. S., Kang, I. K., Kwon, O. K., Kim, B. C., Na, K. H., Ahn, T. I., Lee, J. B., Lee, C. K., Lee, H. K., Kim, S. H., Choi, J. K., 1991, Methods for wetland environment survey, Donghwa Technology Publishing Co., 365.
13 Choi, H. S., 1984, A Model of branching growth pattern in vascular trees, Doctoral thesis, Ewha Womans University, 8.
14 Courtney, F. M., Trudgill, S. T., 1984, The soil: an introduction to soil study, Hodder & Stoughton, London, 30-36.
15 Esser, G., Overdieck, D., 1991, Modern Ecology: basic and applied aspects, ELSEVIER, 195-200.
16 Fahey, T. J., Yavitt, J. B., Joice, G., 1988, Precipitation and throughfall chemistry in Pinus contorta ssp. latifolia ecosystem, Southeastern Wyoming, Can. J. For. Res., 18, 337-345.   DOI
17 Kim, K. H., Woo, B. M., 1988, Study on rainfall interception loss from canopy in forest (I), J. Korean Soc. For. Sci., 77, 331-337.
18 Killingbeck, K. T., Wali, M. K., 1978, Analysis of a north Dacoda gallery forest, nutrient, trace element and productivity relations, Oikos, 30, 29-60.   DOI
19 Kim, J. H., Kwak, Y. S., 1992, Secular changes of density, litterfall, phytomass and primary productivity in Mongolian Oak (Quercus mongolica) forest, J. Ecol. Environ., 15, 19-33.
20 Kim, J. H., Rhyu, T. C., Kim, K. D., 1994, Growth decline and abnormal vertical distribution of fine roots of pitch pine in Seoul Metropolitan Area, J. Ecol. Environ., 17, 261-275.
21 Kostelniket, K. M., Lynch, J. A., Grimm, J. W., Corbett, E. S., 1989, Sample size Requirements for estimation of throughfall chemistry beneath a mixed hardwood forest, J. Environ. Qual., 18, 274-280.   DOI
22 Lee, C. S., 1984, Relationships between soil environmental factors and the growth of annual ring of Pinus densiflora on rocky mountains, MS thesis, Seoul National University, 3.
23 Lee. J. W., 1992, Study on measuring the water yield from the small forested-watersheds, MS thesis, Seoul National University, 50.
24 Likens, G. E., Bormann, F. H., Eaton, J. S., 1980, Effects of acid precipitation on terrestrial ecosystems, NATO conference series, 1, 450-462.
25 Lindberg, S. E., Lovett, G. M., 1992, Deposition and forest canopy interactions of airborne sulfur:results from the integrated forest study, Atmos. Environ., 26, 1477-1492.   DOI
26 Lindberg, S. E., Lovett, G. M., Richter, D. D., Johnson, D. W., 1986, Atmospheric deposition and canopy interactions of major ions in a forest, Science, 231, 141-143.   DOI
27 Gosz, J. R., 1980, Nutrient budget studies for forests along an elevational gradient in New Mexico, Ecology, 61, 515-521.   DOI
28 Falkengren-grerup, U., 1989, Effect of stemflow on beech forest soils and vegetation in Southern Sweden, J. Appl. Ecol., 26, 341-352.   DOI
29 Feller, M. C., 1977, Nutrient movement through western Hemlock-Western Redcedar ecosystems in Southwestern British Columbia, Ecology, 58, 1269-1283.   DOI
30 Gersper, P. L., Holowaychuk, N., 1970, Effects of stemflow water on a Miami soil under a beech tree: II. chemical properties, Soil. Sci. Soc. Amer. Proc., 34, 786-794.   DOI
31 Hazlett, P. W., Foster, N. W., 1989, Sources of acidity in forest-floor percolate from a maple-birch ecosystem, Water Air Soil Poll., 46, 87-97.   DOI
32 Howells, G., 1990, Acid rain and acid waters, Ellis Horwood, Chichester, 64-65.
33 Ivens, W., 1990, Sulfur deposition onto European forests: throughfall data and model estimates, Tellus, 42B, 294-295.   DOI
34 Miller, H. G., Cooper, J. M., Miller, J. D., 1975, Effect of nitrogen supply on nutrients in litter fall and crown leaching in a stand of corsican pine, J. Appl. Ecol., 13, 233-248.   DOI
35 Madgwick, H. A., Ovington, J. D., 1959, The chemical composition of precipitation in adjacent forest and open plots, Forestry, 32, 14-22.   DOI
36 Mecklenburg, R. A., Tukey, Jr., H. B., 1964, Influence of foliar leaching on root uptake and translocation of calsium-45 to thr stems and foliage of Phaseolus vulgaris, Plant Physiol., 39, 533-536.   DOI
37 Mehra, M. S., Pathak, P. C., Singh, J. S., 1985, Nutrient movement in litter fall and precipitation components for Central Himalayan Forests, Ann. Bot., 55, 153-170.   DOI
38 Moore, P. D., Chapman, S. B., 1986, Methods in plant ecology, Blackwell Scientific Publications, 291-335.
39 Orion, 1986, Chloride electrode instruction manual, Orion Research Inc., Boston, 2-32.
40 Parker, G. G., 1983, Throughfall and stemflow in the forest nutrient cycle, Adv. Ecol. Res., 13, 58-134.
41 Pathak, P. C., Pandey, A. N., Singh, J. S., 1985, Apportionment of rainfall in Central Himalayan forests (INDIA), J. Hyd., 76, 319-332.   DOI
42 Paul, E. A., Clark, F. E., 1989, Soil microbiology and biochemistry, Academic Press Inc., New York, 24-26.
43 Percy, K. E., 1989, Vegetation, soils and ion transfer through the forest canopy in two Nova Scotia Lake basins, Water Air Soil Poll., 46, 83.
44 Potter, C. S., Ragsdale, H. L., Wayne, W. T., 1991, Atmospheric deposition and foliar leaching in a regenerating southern Appalachian forest canopy, J. Ecol., 79, 97-115.   DOI
45 Seo, K. U., 1988, Nitrogen content in throughfall and stemflow at a Quercus mongolica stand and a Pinus koraiensis plantation in Kwangju-gun, Kyonggi-do, Korea, MS thesis, Seoul National University, 25.
46 Reuss, J. O., Johnson, D. W., 1986, Acid deposition and the acidification of soils and waters, Springer-Verlag, 10.
47 Roda, F., Avila, A., Bonilla, D., 1990, Precipitation, throughfall, soil solution and stream-water chemistry in Holm-Oak (Quercus ilex) Forest, J. Hyd., 116, 171-173.
48 SAS, 2015, SAS/STAT Guide for Personal Computers, SAS Institute Inc., Cary, 273-274.
49 Simmons, G. L., Kelly, J. M., 1989, Effects of acidic precipitation, $O_3$, and soil Mg status on throughfall, soil, and seedling loblolly pine nutrient concentration, Water Air Soil Poll, 43, 119-210.   DOI
50 So, S. S., Lee, C. W., 1986, Measurements of weather, Kyomunsa, Seoul, 139-159.
51 Sokal, R. R., Rohlf, F. J., 1981, Biometry, W. H. Freeman and Company, New York, 58-59.
52 Stephen, J. L., Wigington, Jr., P. J., 1987, Oxidized nitrogen in precipitation, throughfall, and streamfall from a forested watershed in Oklahoma, Water Resour. Bull., 23, 1069-1076.   DOI
53 Summers, P. W., Whelpdalf, D. M., 1976, Acid precipitation in Canada, Proc. 1st international symp. on acid precipitation and forest ecosystem, 431-433.
54 Zinke, P. J., 1959, The pattern of influence of individual forest trees on soil properties, Ecology, 43, 130-131.   DOI
55 Veneklaas, E. J., 1990, Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forest, Colombia, J. Ecol., 78, 977.   DOI
56 Verstraten, J. M., Dopheide, J. C. R., Duysings, J. J. H. M., Tietema, A., Bouten, W., 1990, The proton cycle of a deciduous forest ecosystem in the Netherlands and its implications for soil acidification, Plant Soil, 127, 61-69.   DOI
57 Wolt, J. D., 1990, Mechanisms of forest response to acidic deposition: Effects of acidic deposition on the chemical form and bioavailability of soil aluminum and manganese, Springer-Verlag, New York, 62-107.
58 Zinke, P. J., 1962, The pattern of influence of individual forest trees on soil properties, Ecology, 43, 130-133.   DOI