Browse > Article
http://dx.doi.org/10.5322/JESI.2015.24.12.1583

Morphological Responses of Korean Native Plant Hosta longipes to Heavy Metals Cd, Pb, and Zn  

Kang, Kwang-Cheol (Department of Chemistry, College of Nature Science, Chungbuk National University)
Ju, Jin-Hee (Department of Green Technology Convergence, Konkuk University)
Publication Information
Journal of Environmental Science International / v.24, no.12, 2015 , pp. 1583-1590 More about this Journal
Abstract
The aim of this study was to examine the morphological responses of Hosta longipes, an ornamental plants for heavy metal contaminated soils in urban landscaping, to heavy metals Cd, Pb, and Zn. Plants were grown in artificial soil amended with Cd, Pb, and Zn at concentation of 0, 100, 250, and 500 mg/kg. Plant height, leaf length, leaf width, total leaf number, deaf leaf number, new leaf number, chlorophyll contents, and ornamental value were monitored from May to August. At 4 months after planting, the survival and morphological responses of H. longipes grown in soil amended with Cd at concentrations ${\geq}100mg/kg$ were severely affected compared to those grown in the control soil. Relative leaf length rate and relative leaf width rate were significantly decreased when the concentration of Pb was increased. Total leaf number, chlorophyll contents, and ornamental value were the lowest value in plants grown in soil amended with Pb at level of 500 mg/kg. Relative leaf length rate and relative leaf width rate, total leaf number, dead leaf number, new leaf number, and ornamental values had a tendency of decrease when plants were grown in soils amended with Zn. However, no significant difference was found among treatments except for plants were grown in soils amended with 500 mg/kg Zn. Therefore, Hosta longipes might be useful for phytoremediation of Zn contaminated sites as herbaceous ornamental plants.
Keywords
Chlorophyll contents; Ground cover plants; Korean native plants; Ornamental value; Plant growth;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Anthony, G. K., Singh, B., Bhatia, N. P., 2006, Heavy metal tolerance in common fern species, Austral. J. Bot., 55(1), 63-73.   DOI
2 Caldelas, C., Bort, J., Febrero, A., 2012, Ultrastructure and subcellular distribution of Cr in Iris pseudacorus L. using TEM and X-ray microanalysis, Cell Biol. Toxicol., 28, 57-68.   DOI
3 Chung, Y. C., and Chung, Y. H., 1988, A taxonomic study of the genus Hosta in Korea, Kor. J. Plant Tax., 18(2), 161-172.   DOI
4 Clemens, S., 2006, Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants, Biochimie., 88, 1707-1719.   DOI
5 Clijsters, H., Van-Assche, F., 1985, Inhibition of photosynthesis by heavy metals, Photosyn. Res., 7, 31-40.   DOI
6 Cunningham, S. D., Berti, W. R., Huang, J. W., 1995, Phytoremediation of contaminated soils, Trends in Biotechnology, 131, 393-397.
7 Daniela, I. O., Schindler, V., Lavado, R. S., 2012, Heavy metal availability in Pelargonium hortorum rhizosphere: interactions, uptake and plant accumulation, Journal of Plant Nutrition., 35, 1374-1386.   DOI
8 Deng, H., Ye, Z. H., Wong, M. H., 2006, Lead and zinc accumulation and tolerance in populations of six wetland plants, Environ Pollut., 141, 69-80.   DOI
9 Dhir, B., Sharmila, P., Saradhi, P. P., 2008, Photosynthetic performance of Salvinia natas exposed to chromium and zinc rich wastewater, Bras. J. Plant Physiol., 20, 61-70.   DOI
10 Gladkova, E. A., Gladkova, O. N., Glushetskaya, L. S., 2011, Estimation of heavy metal resistance in the second generation of creeping bent grass (Agrostis solonifera) obtained by cell selection for resistance to these contaminants and the ability of this plant to accumulate heavy metal, Applied Biochemistry and Microbiology, 47(8), 776-779.   DOI
11 Grenfell, D., 1996, The Gardener's Guide to Growing Hostas, Portland: Timber.
12 Han Y., Yuan, H., Huang, S., Guo, Z., Xia, B., Gu, J., 2007, Cadmium tolerance and accumulation by two species of Iris, Ecotoxicol., 16, 557-563.   DOI
13 Izabella, F. and Agnieszka, B., 2011, The growth and reproductive effort of Betula pendula Roth in a heavy-metals polluted area, Polish J. of Environ. Stud., 20(4), 1097-1101.
14 Janik, E., Maksymiec, W., Mazur, R., Garstka, M., Gruszecki, W. I., 2010, Structural and functional modifications of the major light-harvesting complex II in cadmium or copper treated Secale cereale, Plant Cell Physiol., 51, 1330-1340.   DOI
15 Ju, J. H., Yoon, Y. H., 2010, Evaluation of the heavy metal tolerance of Saxifraga stolonifera, shade groundcover plant, to different concentration of Cd, Pb and Zn in soil, Journal of the Environmental Science, 19(5), 585-590.   DOI
16 Ju, J. H., Yoon, Y. H., 2013, Phytoremediation of soil contaminated with heavy metal by Hosta longipes in urban shade, Journal of Environmental Policy, 12(4), 119-132.   DOI
17 Liu, J. N., Zhou, Q. X., Sun, T., Ma, L. Q., Wang, S., 2008, Growth responses of three ornamental plants to Cd and Cd-Pb stress and their metal accumulation characteristics, Journal of Hazardous Materials, 151(1), 261-267.   DOI
18 Lee, S. C., Kim, W. S., 2011, Cadmium accumulation and tolerance of Iris pseudacorus and Acorus calamus as aquatic plants native to Korea, Kor. J. Hort. Sci. Technol., 29(5), 413-419.
19 Lee, A. R., Bae, B. H., 2014, Improved germination and seedling growth of Echinochloa crus-galli var. frumentacea in heavy metal contaminated medium by inoculation of a multiple-plant growth promoting rhizobacterium (m-PGPR), J. Soil & Groundwater Env., 16(5), 9-17.   DOI
20 Lin, W., Xiao, T., Zhou, W., Ning, Z., 2014, Pb, Zn, and Cd distribution and migration at a historical zinc smelting site, Pol. J. Environ. Stud., 24(2), 575-583.
21 Marshner, H., 1995, Mineral Nutrition of Higher Plants, London: Academic.
22 Malecka, A., Piechalak, A., Hanc, A., Baralkiewicz, D., Tomaszewska, B., 2012, Antioxidative defense system in Pisum sativum roots exposed to heavy metals (Pb, Cu, Cd, Zn), Plo. J. Environ. Stud., 21(6), 1721-1730.
23 Ministry of Environment, 2009, Soil monitoring system and survey results on 2009.
24 Nagase, A., Dunnett, N., 2010, Drought tolerance in different vegetation types for extensive green roofs: effect of watering and diversity. Landscape and Urban planning, 97(4), 318-327.   DOI
25 Oh, C. G., 2013, Study on the soil contamination characteristics according to the functions of the returned U.S. military base, Journal of Environmental Impact Assessment, 22(5), 481-489.   DOI
26 Shelmerdine, A., Black, C., McGrath, S., Young, S., 2009, Modelling phytoremediation by the hyperaccumulat2082ing fern, Pteris vittata, of soils historically contaminated with arsenic, Environmental Pollution, 157, 1589-1596.   DOI
27 Prasad, M. N. V., Strzalka., K., 1999, Impact of heavy metal on photosynthesis, Springer, Berlin.
28 Prabhat, K. R., 2008, Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach, International Journal of Phytoremediation, 10, 133-160.   DOI
29 Samecka, C. A., Kolon, K., Kempers, A., 2009, Short shoots of Betula pendula Roth as bioindicators of urban environmental pollution in Wroclaw (Poland), Trees, 20, 923.
30 Song, J. H., Jin, H. Y., Ahn, T. H., 2010, A study on physicochemical properties of artificial substrates and changes of plant growth in tropical plant resources research center of Korea national arboretum, J. Korean Env. Res. Tech., 13(2), 52-62.
31 Sun, Y., Zhou, Q., Xu, Y., Wang, L., Liang, X., 2011, Phytoremediation for co-contaminated soils of benzo [a]pyrene (B[a]P) and heavy metals using ornamental plant Tagetes patula, Journal of Hazardous Materials, 186, 2075-2082.   DOI
32 Uveges, J. L., Corbett, A. L., Mal, T. K., 2002, Effects of lead contamination on the growth of Lythrum salicaria (purple loosestrife), Environ Pollut., 120, 319-323.   DOI
33 Zhang, J. Z., Wang, W., Sun, G. F., Liu, H. Z., Li, X. D., 2011, Photosynthesis of Hosta under light and controlled-release nitrogen fertilizer, Russian Journal of Plant Physiology, 58(2), 261-270.   DOI