Browse > Article
http://dx.doi.org/10.5322/JESI.2015.24.10.1273

Temporal Characteristics of Selected Volatile Organic Compounds in Urban High-Stories Urban Apartments  

Shin, Seung Ho (Department of Health Environment, Daegu Health College)
Kim, Ji-Hoon (Department of Health Environment, Daegu Health College)
Jo, Wan Kuen (Department of Environmental Engineering, Kyungpook National University Daegu)
Publication Information
Journal of Environmental Science International / v.24, no.10, 2015 , pp. 1273-1283 More about this Journal
Abstract
In present study, the temporal characteristics of nine selected volatile organic compounds (VOCs), including four alcohol, 2 aldehyde, and 3 ketone compounds, in high-stories urban apartments over a 2-y period were investigated. The indoor VOC concentrations had generally a decreasing trend over the 2-y follow-up period. For examples, the 2E1H indoor concentration decreased from $10.8{\mu}g/m^3$ for the first two months to $5.1{\mu}g/m^3$ for the last two months. In addition, the DCA and ACT indoor concentrations decreased from 5.0 and $14{\mu}g/m^3$ for the first two months to 2.2 and $6.4{\mu}g/m^3$, respectively, for the last two months. The indoor-to outdoor concentration ratios over the 2-y period were much greater than 1, indicating that indoor VOC concentrations were higher than the outdoor VOC concentrations. Similar to those of the individual VOCs, the indoor-to-outdoor concentration ratios of all three VOC groups were higher than 1 over the 2-y follow-up period, suggesting higher indoor concentrations of the three VOC groups than outdoor concentrations. In consistence with the results of VOC indoor concentrations, the VOC emission rates decreased gradually as time passed, due to the decreased VOC emission strengths of indoor sources. Finally, there was an initial sharp decrease in the indoor VOC concentrations followed by a slower decrease, indicating a multi-exponential decay model for the target VOCs, which was demonstrated by comparison of the residuals and the adjusted coefficient of determination associated with the one and two-exponential fits of each data set.
Keywords
Temporal characteristics; Decay compartment model; Consumer product; High story; VOC source;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Takigawa, T., Saijo, Y., Morimoto, K., Nakayama, K., Shibata, E., Tanaka, M., Yoshimura, T., Chikara, H., Kishi, R., 2012, A longitudinal study of aldehydes and volatile organic compounds associated with subjective symptoms related to sick building syndrome in new dwellings in Japan, Sci. Total Environ., 417-418, 61-67.   DOI
2 Tuomainen, M., Tuomainen, A., Liesvuori, J., Pasanen, A. -P., 2003, The 3-year follow-up study in a block of flats-experiences in the use of the Finnish indoor climate classification, Indoor Air, 13, 136-147.   DOI
3 Uchiyama, S., Tomizawa, T., Tokoro, A., Aoki, M., Hishiki, M., Yamada, T., Tanaka, R., Sakamoto, H., Yoshida, T., Bekki, B., Inaba, Y., Nakagome, H., Kunugita, N., 2015, Gaseous chemical compounds in indoor and outdoor air of 602 houses throughout Japan in winter and summer, Environ. Res., 137, 364-372.   DOI
4 Wang, J., Smedje, J., Nordquist, T., Norback, D., 2015, Personal and demographic factors and change of subjective indoor air quality reported by school children in relation to exposure at Swedish schools: A 2-year longitudinal study, Sci. Total Environ., 508, 288-296.   DOI
5 Wangchuk, T., Mazaheri, M., Clifford, S., Dudzinska, M. R., He, C., Buonanno, G., Morawska, L., 2015, Children's personal exposure to air pollution in rural villages in Bhutan, Environ. Res., 140, 691-698.   DOI
6 Xiong, J., Wang, L., Bai, Y., Zhang, Y., 2013, Measuring the characteristic parameters of VOC emission from paints, Build. Environ., 66, 65-71.   DOI
7 Yan, W., Zhang, Y,m Wang, X., 2009, Simulation of VOC emissions from building materials by using the statespace method, Build. Environ., 44, 471-478.   DOI
8 Ye, W., Little, J. C., Won, D., Zhang, X., 2014, Screeninglevel estimates of indoor exposure to volatile organic compounds emitted from building materials, Build. Environ., 75, 58-66.   DOI
9 Cakmak, S., Dales, R. E., Liu, L., Kauri, L. M., Lemieux, C. L., Hebbern, C., Zhu, J., 2014, Residential exposure to volatile organic compounds and lung function: results from a population-based cross-sectional survey, Environ. Poll., 194, 145-151.   DOI
10 Bari, M. A., Kindzierski, W. B., Wheeler, A. J., Heroux, M. -E, Wallace, L. A., 2015, Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Build. Environ., 90, 114-124.   DOI
11 Chen, W., Persily, A. K., Hodgson, A. T., Offermann, F. J., Poppendieck, D., Kumagai, K., 2014, Area-specific airflow rates for evaluating the impacts of VOC emissions in U.S. single-family homes, Build. Environ., 71, 204-211.   DOI
12 Cometto-Muniz, J. E., Abraham, M. H., 2015, Compilation and analysis of types and concentrations of airborne chemicals measured in various indoor and outdoor human environments, Chemosphere, 127, 70-86.   DOI
13 de Gennaro, G., de Gennaro, L., Mazzone, A., Porcelli, F., Tutino, M., 2014, Indoor air quality in hair salons: Screening of volatile organic compounds and indicators based on health risk assessment, Atmos. Environ., 83, 119-126.   DOI
14 Deng, Q., Yang, X., Zhang, J. S., 2012, Key factor analysis of VOC sorption and its impact on indoor concen-trations: the role of ventilation, Build. Environ., 47, 182-187.   DOI
15 Do, D. H., Walgraeve, C., Amare, A. N., Barai, K. R., Parao, A. E., Demeestere, K., van Langenhove, H., 2015, Airborne volatile organic compounds in urban and industrial locations in four developing countries. Atmos. Environ., 119, 330-338.   DOI
16 Jarnstrom, H., Saarela, K., Kalliokoski, P., Pasanen, A. -L., 2006, Reference values for indoor air pollution concentrations in new residential buildings in Finland, Atmos. Environ., 40, 7178-7191.   DOI
17 Gokhale, S., Kohajda, T., Schlink, U., 2008, Source apportionment of human personal exposure to volatile organic compounds in homes, offices and outdoors by chemical mass balance and genetic algorithm receptor models, Sci. Total Environ., 407, 122-138.   DOI
18 Han, K. H., Zhang, J. S., Knudsen, H. N., Wargocki, P., Chen, H., Varshney, P. K., Guo, B., 2011, Development of a novel methodology for indoor emission source Identification, Atmos. Environ., 45, 3034-3045.   DOI
19 Han, K., Zhang, J. S., Guo, B., 2014, A novel approach of integrating ventilation and air cleaning forsustainable and healthy office environments, Energy Build., 76, 32-42.   DOI
20 Jarnstrom, H., Saarela, K., Kalliokoski, P., Pasanen, A. -L., 2007, Reference values for structure emissions measured on site in new residential buildings in Fin -land, Atmos. Environ., 41, 2290-2302.   DOI
21 Langer, S., Beko, G., Bloom, E., Widheden, A., Ekberg, L., 2015, Indoor air quality in passive and conventional new houses in Sweden, Build. Environ., 93, 92-100.   DOI
22 Li, F., Niu, J., 2007, Control of volatile organic compounds indoors-development of an integrated masstransfer-based model and its application, Atmos. Environ., 41, 2344-2354.   DOI
23 Liu, Z., Ye, W., Little, J. C., 2013, Predicting emissions of volatile and semivolatile organic compounds from building materials: a review, Build. Environ., 64, 7-25.   DOI
24 Park, J. S., Ikeda, K., 2006, Variations of formaldehyde and VOC levels during 3 years in new and older homes, Indoor Air, 16, 129-135.   DOI
25 Liang, W., Yang, C., Yang, X., 2014, Long-term concentrations of volatile organic compounds in a new apartment in Beijing, China. Build. Environ., 82, 693-701.   DOI
26 Mishra, N., Bartsch, J., Ayoko, G. A., Salthammer, T., Morawska, L., 2015, Volatile organic compounds: characteristics, distribution and sources in urban schools, Atmos. Environ., 106, 485-491.   DOI
27 Ongwandee, M., Moonrinta, R., Panyametheekul, S., Tangbanluekal, C., Morrison, G., 2011, Investigation of volatile organic compounds in office buildings in Bangkok, Thailand: Concentrations, sources, and occupant symptoms, Build. Environ., 46, 1512-1522.   DOI
28 Rackes, A., Waring, M. S., 2013, Modeling impacts of dynamic ventilation strategies on indoor air quality of offices in six US cities, Build. Environ., 60, 243-253.   DOI
29 Schieweck, A., Bock, M. -C., 2015, Emissions from low-VOC and zero-VOC paints valuable alternatives to conventional formulations also for use in sensitive environments?, Build. Environ. 85, 243-252.   DOI
30 Shin, S. H., Jo, W. K., 2013, Longitudinal variations in indoor VOC concentrations after moving-into new apartments and indoor source characterization, Environ. Sc. Poll. Res., 20, 3696-3707   DOI
31 Su, F.-C., Mukherjee, B., Batterman, S., 2013, Determinants of personal, indoor and outdoor VOC concentrations: an analysis of the RIOPA data, Environ. Res., 126, 192-203.   DOI