Browse > Article
http://dx.doi.org/10.5322/JES.2012.21.7.779

Optimal Culturing and Enhancement of Lipid Accumulation in a Microalga Botryococcus braunii  

Kwon, Sung-Hyun (Department of Marine Environmental Engineering, Gyeongsang National University)
Lee, Eun-Mi (Department of Energy & Environmental Engineering, Soonchunhyang University)
Cho, Dae-Chul (Department of Energy & Environmental Engineering, Soonchunhyang University)
Publication Information
Journal of Environmental Science International / v.21, no.7, 2012 , pp. 779-785 More about this Journal
Abstract
Several tests and experimental work have been done for identifying the best growth conditions and accumulated amount of lipid moiety in B. braunii, a microalga(UTEX 572) in terms of media composition. The specific growth rate was found to be the highest at 0.15 g/L-day when the phosphorus concentration was doubled with the other ingredients at the normal level. Experiments for varied media compositions revealed that the accumulation of lipid was the highest at 48% (dry cell weight based) in the nitrogen deficient medium and its corresponding specific growth rate was comparative to that in the normal BG 11 medium. In the bubble column experiments, carbon dioxide containing air produced four times more cell mass than air only. Light and glucose addition also enhanced cell mass with maximum, 1.8 g/L and accordingly 42% of lipid composition, which turned out to be a better strategy for higher lipid-producing microalgal culture.
Keywords
Botryococcus braunii; Lipid content; Optimal culturing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Molina, E., Martinez, E., Sanchez, S., 1991, The influence of temperature and the initial N:P ratio on the growth of microalgae Tetraselmis sp., Process Biochemistry, 26(3), 183-187.   DOI
2 Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A., 2006, Commercial applications of microalgae, J. Biosci. Bioeng., 101, 87-96.   DOI
3 Wolf, F. R., Nonomura, A. M., Bassham, J. A., 1985, Growth and branched hydrocarbon production in a strain of Botryococcus braunii(Chlorophyta). J. Phycol., 21, 388-396.
4 Wyman, C. E., Goodman, B. J., 1993, Biotechnology for production of fuels, chemicals, and materials from biomass, Appl. Biochem. Biotech., 39/40, 41-59.   DOI
5 Xu, H., Miao, X., Wu, Q., 2006, High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of biotechnology, 126(4), 449-507.
6 Yongmanitchai, W., Ward, O. P., 1991, Screening of algae for potential alternative sources of eicosapentaenoic acid, Phytochemistry, 30(9), 2963-2967.   DOI
7 Endo, H., Hosoya, H., Koibuchi, T., 1977, Growth yields of Chlorella regularis in dark-heterotrophic continuous cultures using acetate. J. Ferment. Technol., 55, 369-370.
8 Grima, E. M., Camacho, F. G., Perez, J. A. S., 1994, Biochemical productivity and fatty acid profiles of Isochrysis galbana Parke and Tetraselmis sp. as a function of incident light intensity, Process Biochemistry, 29(2), 119-126.   DOI
9 Kenyon, C. N., Rippka, R., Stanier, R. Y., 1972, Fatty acid composition and physiological properties of some filamentous blue-green algae, Archiv für Mikrobiologie, 83(3), 216-236.   DOI
10 Kosaric, N., Velikonja, J., 1995, Liquid and gaseous fuels from biotechnology: Challenge and opportunities, FEMS Microbiol. Rev., 16, 111-142.   DOI
11 Lee, S. J., Kim, S. B., Kim, J. E., Kwon, G. S., Yoon, B. D., Oh, H. M., 1998, Effects of harvesting time and growth stage on the flocculation of the green alga Botryococcus braunii, Lett. Appl. Microbiol., 27, 14-18.   DOI   ScienceOn
12 Lee, S. J., Yoon, B. D., Oh, H. M., 1998, Rapid method for the determination of lipids from the green alga Botryococcus braunii, Biotechnol. Tech., 12, 553-556.   DOI
13 Livne, A., Sukenik, A., 1992, Lipid Synthesis and abundance of Acetyl CoA carboxylase in Isochrysis galbana(Prymnesiophyceae) following nitrogen starvation, Plant and Cell Physiology, 33(8), 1175-1181.
14 Lorenz, R. T., Cysewski, G. R., 2003, Commercial potential for Haematococcus microalga as a natural source of astaxanthin, Trends Biotechnol., 18, 160-167.
15 Metzger, P., Largeau, C., 2005, Botryococcus braunii: a rich source for hydrocarbons and related ether lipids, Appl. Microbiol. Biotechnol., 66, 486-496.   DOI
16 오희목, 김정석, 이석준, 1998, 미세조류에 의한 지구온난화기체의 고정화, Korean J. Environ. Biol., 16(4), 291-297.
17 Bajpai, P., Bajpai, P. K., 1993, Eicosapentaenoic acid (EPA) production from microorganisms: a review, Journal of biotechnology, 30(2), 161-183.   DOI   ScienceOn
18 Belarbi, E. -H., Molina, G. E., Chisti, Y., 2006, A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil, Enzyme Microbiol. Technol., 26, 516-529.
19 Chisti, Y., 2007, Diesel from microalgae, Biotechnology Advances, 25, 294-306.   DOI   ScienceOn
20 Dijkstra, A. J., 2006, Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils, Eur. J. Lipid Sci. Technol., 108(3), 249-264.   DOI