Browse > Article
http://dx.doi.org/10.5322/JES.2012.21.4.507

In-situ Preparation of Eco-friendly Hydrpxyapatite/Waterborne Polyurethane Composites  

Lee, Jun-Gun (Department of Polymer Engineering, Pukyong National University)
Lee, Won-Ki (Department of Polymer Engineering, Pukyong National University)
Park, Sang-Bo (Department of Polymer Engineering, Pukyong National University)
Park, Chan-Young (Department of Polymer Engineering, Pukyong National University)
Min, Sung-Kee (Department of Polymer Engineering, Pukyong National University)
Jang, Sung-Ho (Department of Regional Environmental System Engineering, Pusan National University)
Publication Information
Journal of Environmental Science International / v.21, no.4, 2012 , pp. 507-515 More about this Journal
Abstract
To improve the mechanical properties of hydroxyapatite (HA)/waterborne polyurethane (WBPU) composites, the hydroxyl group of HA was modified by urethane reactions: the hydroxyl groups of HA were reacted with aliphatic or cyclic diisocyanate, and then the modified HAs were extended by adding polyol and/or ${\varepsilon}$-caprolactone. Composites were prepared by the prepolymer process method: the modified HA was directly pured into the urethane reaction of isocyanate and polyol. The properties of modified HA/WBPU composites were investigated by thermogravimetric analysis, tensile strength, and water resistance. The results showed that the reactivity of aliphatic diisocyanate to the hydroxy group of HA was faster than that of cyclic one. Comparing to those of pure HA/WBPU composite films, the thermal stability, water resistance, and mechanical properties of the modified composite films increased with a degree of modification of HA.
Keywords
Hydroxyapatite; Waterborne polyurethane; Composites;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shikinami, Y., Okuno, M., 1999, Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics, Biomaterials, 20, 859-877.   DOI   ScienceOn
2 Son, B. G., Hwang, T. S., 2007, Synthesis of polyurethane nanocomposite filled inorganic particles and their properties, Polymer(Kor), 31, 379-384.
3 Walsh, W. R., Svehla, M. J., Russell, J., Saito, M., Nakashima, T., Gillies, R. M., Bruce, W., Hori, R., 2004, Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness, Biomaterials, 25, 4929-4934.   DOI   ScienceOn
4 Wang, H., Li, Y., Zuo, Y., Li, J., Ma, S., Cheng, L., 2007, Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering, Biomaterials, 28, 3338-3348.   DOI   ScienceOn
5 Wei, G., Ma, P. X., 2004, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering, Biomaterials, 25, 4749-4757.   DOI   ScienceOn
6 Yeh, J. M., Yao, C. T., Hsieh, C. F., Lin, L. H., Chen, P. L., Wu, J. C., Yang, H. C., Wu, C. P., 2008, Preparation, characterization and electrochemical corrosion studies on environmentally friendly waterborne polyurethane/Na+-MMT clay nanocomposite coatings, Eur. Polym. J., 44, 3046-3056.   DOI   ScienceOn
7 Young, R. A., Holcomb, D. W., 1982, Variability of hydroxyapatite preparations, Calcif. Tissue Int., 34, 17-32.
8 Zhang, Y., Tanner, K. E., Gurav, N., Silvio, L. D., 2007, In vitro osteoblastic response to 30 vol % hydroxyapatite-polyethylene composite, J. Biomed. Mater. Res., 81A, 409-417.   DOI   ScienceOn
9 Zhao, C. X., Zhang, W. D., 2008, Preparation of waterborne polyurethane nanocomposites: Polymerization from functionalized hydroxyapatite, Eur. Polym. J., 44, 1988-1995.   DOI   ScienceOn
10 De Groot, K., 1986, Macroporous tissue ingrowth: a quantitative and qualitative study on hydroxyapatite ceramics, Biomaterials, 7, 137-143.   DOI   ScienceOn
11 Fang, L., Leng, Y., Gao, P., 2006, Processing and mechanical properties of HA/UHMWPE nanocomposites, Biomaterials, 27, 3701-3707.   DOI   ScienceOn
12 Hao, J., Yuan, M., Deng, X., 2002, Biodegradable and biocompatible nanocomposites of poly($\varepsilon$-caprolactone) with hydroxyapatite nanocrystals: thermal and mechanical properties, J. Appl. Polym. Sci., 86, 676-883.   DOI   ScienceOn
13 Joris, S. J., Amberg, C. H., 1971, The nature of deficiency on non-stoichiometric hydroxyapatites, 75, 3172-3178.   DOI
14 Lee, H. J., Kim, S. E., Choi, H. W., Kim, C. W., Kim, K. J., Lee, S. C., 2007, The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly ($\varepsilon$-caprolactone)/hydroxyapatite nanocomposites, Eur. Polym. J., 43, 1602-1608.   DOI   ScienceOn
15 Lee, T. Y., Lee, H. S., Seo, S. W., 1999, Structure of polyurethane thermoplastic elastomer, Polym. Sci. Tech., 10, 597-613.
16 Liu, Q., Wijn, J. R., Blitterswijk, C. A., 1998, A study on the grafting reaction of isocyanates with hydroxyapatite particles, J. Biomed. Mater. Res., 40, 358-364.   DOI   ScienceOn
17 Liu, T. Y., Chen, S. Y., Liu, D. M., 2004, Influence of the aspect ratio of bioactive nanofillers on rheological behavior of pmma-based orthopedic materials, J. Biomed. Mater. Res., Part B: Appl. Biomater., 71B, 116-122.   DOI
18 Seo, D. S., Kim, Y. G., Hwang K. H., Lee, J. K. 2008, Preparation of hydroxyapatite powder derived from tuna bone and its sintering property, J. Kor. Ceram. Soc., 45, 594-599.   DOI
19 Rahman, M. M., Kim, H. D., Lee, W. K., 2008, Preparation and characterization of waterborne polyurethane/clay nanocomposite: effect on water vapor permeability, J. Appl. Polym. Sci., 110, 3697-3705.   DOI   ScienceOn