Browse > Article
http://dx.doi.org/10.3807/COPP.2019.3.4.275

Chirality in Non-Hermitian Photonics  

Yu, Sunkyu (Photonic Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University)
Piao, Xianji (Photonic Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University)
Park, Namkyoo (Photonic Systems Laboratory, Department of Electrical and Computer Engineering, Seoul National University)
Publication Information
Current Optics and Photonics / v.3, no.4, 2019 , pp. 275-284 More about this Journal
Abstract
Chirality is ubiquitous in physics and biology from microscopic to macroscopic phenomena, such as fermionic interactions and DNA duplication. In photonics, chirality has traditionally represented differentiated optical responses for right and left circular polarizations. This definition of optical chirality in the polarization domain includes handedness-dependent phase velocities or optical absorption inside chiral media, which enable polarimetry for measuring the material concentration and circular dichroism spectroscopy for sensing biological or chemical enantiomers. Recently, the emerging field of non-Hermitian photonics, which explores exotic phenomena in gain or loss media, has provided a new viewpoint on chirality in photonics that is not restricted to the traditional polarization domain but is extended to other physical quantities such as the orbital angular momentum, propagation direction, and system parameter space. Here, we introduce recent milestones in chiral light-matter interactions in non-Hermitian photonics and show an enhanced degree of design freedom in photonic devices for spin and orbital angular momenta, directionality, and asymmetric modal conversion.
Keywords
Chirality; Non-Hermitian photonics; Parity-time symmetry; Exceptional point;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. M. Bender and S. Boettcher, "Real spectra in non-Hermitian Hamiltonians having PT symmetry," Phys. Rev. Lett. 80, 5243 (1998).   DOI
2 C. M. Bender, D. C. Brody, and H. F. Jones, "Complex extension of quantum mechanics," Phys. Rev. Lett. 89, 270401 (2002).   DOI
3 C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, "Observation of parity-time symmetry in optics," Nat. Phys. 6, 192-195 (2010).   DOI
4 A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, "Observation of PT-symmetry breaking in complex optical potentials," Phys. Rev. Lett. 103, 093902 (2009).   DOI
5 S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. Makris, M. Segev, M. Rechtsman, and A. Szameit, "Topologically protected bound states in photonic parity-time-symmetric crystals," Nat. Mater. 16, 433-438 (2017).   DOI
6 S. Assawaworrarit, X. Yu, and S. Fan, "Robust wireless power transfer using a nonlinear parity-time-symmetric circuit," Nature 546, 387-390 (2017).   DOI
7 R. Fleury, D. L. Sounas, and A. Alu, "Negative refraction and planar focusing based on parity-time symmetric metasurfaces," Phys. Rev. Lett. 113, 023903 (2014).   DOI
8 W. Heiss and H. Harney, "The chirality of exceptional points," Eur. Phys. J. D 17, 149-151 (2001).   DOI
9 W. D. Heiss, M. Müller, and I. Rotter, "Collectivity, phase transitions, and exceptional points in open quantum systems," Phys. Rev. E 58, 2894 (1998).   DOI
10 S. Yu, X. Piao, J. Hong, and N. Park, "Bloch-like waves in random-walk potentials based on supersymmetry," Nat. Commun. 6, 8269 (2015).   DOI
11 S. Yu, X. Piao, and N. Park, "Controlling random waves with digital building blocks based on supersymmetry," Phys. Rev. Appl. 8, 054010 (2017).   DOI
12 S. Yu, H. S. Park, X. Piao, B. Min, and N. Park, "Low-dimensional optical chirality in complex potentials," Optica 3, 1025-1032 (2016).   DOI
13 W. Heiss, "Repulsion of resonance states and exceptional points," Phys. Rev. E 61, 929-932 (2000).   DOI
14 S. Yu, X. Piao, D. R. Mason, S. In, and N. Park, "Spatiospectral separation of exceptional points in PT-symmetric optical potentials," Phys. Rev. A 86, 031802 (2012).   DOI
15 M. Lawrence, N. Xu, X. Zhang, L. Cong, J. Han, W. Zhang, and S. Zhang, "Manifestation of PT symmetry breaking in polarization space with terahertz metasurfaces," Phys. Rev. Lett. 113, 093901 (2014).   DOI
16 M. Kang and Y. D. Chong, "Coherent optical control of polarization with a critical metasurface," Phys. Rev. A 92, 043826 (2015).   DOI
17 M. Kang, J. Chen, and Y. D. Chong, "Chiral exceptional points in metasurfaces," Phys. Rev. A 94, 033834 (2016).   DOI
18 S. Yu, X. Piao, and N. Park, "Acceleration toward polarization singularity inspired by relativistic E $\times$ B drift," Sci. Rep. 6, 37754 (2016).   DOI
19 W. D. Heiss, "The physics of exceptional points," J. Phys. A 45, 444016 (2012).   DOI
20 S. Yu, X. Piao, and N. Park, "Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere," Phys. Rev. A 97, 033805 (2018).   DOI
21 A. Cerjan and S. Fan, "Achieving arbitrary control over pairs of polarization states using complex birefringent metamaterials," Phys. Rev. Lett. 118, 253902 (2017).   DOI
22 D. L. Andrews and M. Babiker, The angular momentum of light (Cambridge University Press, Cambridge, UK, 2012).
23 B. Baum, M. Lawrence, D. Barton III, J. Dionne, and H. Alaeian, "Active polarization control with a parity-time-symmetric plasmonic resonator," Phys. Rev. B 98, 165418 (2018).   DOI
24 X. Piao, S. Yu, and N. Park, "Design of transverse spinning of light with globally unique handedness," Phys. Rev. Lett. 120, 203901 (2018).   DOI
25 H. Kuratsuji and S. Kakigi, "Maxwell-Schrodinger equation for polarized light and evolution of the Stokes parameters," Phys. Rev. Lett. 80, 1888 (1998).   DOI
26 N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science 340, 1545-1548 (2013).   DOI
27 D. Naidoo, F. S. Roux, A. Dudley, I. Litvin, B. Piccirillo, L. Marrucci, and A. Forbes, "Controlled generation of higher-order Poincare sphere beams from a laser," Nat. Photonics 10, 327-332 (2016).   DOI
28 R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, and F. Capasso, "Arbitrary spin-to-orbital angular momentum conversion of light," Science 358, 896-901 (2017).   DOI
29 A. Mock, D. Sounas, and A. Alu, "Tunable orbital angular momentum radiation from angular-momentum-biased microcavities," Phys. Rev. Lett. 121, 103901 (2018).   DOI
30 N. C. Zambon, P. St-Jean, M. Milicevic, A. Lemaitre, A. Harouri, L. Le Gratiet, O. Bleu, D. D. Solnyshkov, G. Malpuech, and I. Sagnes, S. Ravets, A. Amo, and J. Bloch, "Optically controlling the emission chirality of microlasers," Nat. Photonics 13, 283-288 (2019).   DOI
31 B. Peng, S. K. Ozdemir, M. Liertzer, W. Chen, J. Kramer, H. Yilmaz, J. Wiersig, S. Rotter, and L. Yang, "Chiral modes and directional lasing at exceptional points," Proc. Natl. Acad. Sci. 113, 6845-6850 (2016).   DOI
32 C. Dembowski, B. Dietz, H. D. Gräf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, "Observation of a chiral state in a microwave cavity," Phys. Rev. Lett. 90, 034101 (2003).   DOI
33 P. Miao, Z. Zhang, J. Sun, W. Walasik, S. Longhi, N. M. Litchinitser, and L. Feng, "Orbital angular momentum microlaser," Science 353, 464-467 (2016).   DOI
34 W. E. Hayenga, J. Ren, M. Parto, F. Wu, M. P. Hokmabadi, C. Wolff, R. El-Ganainy, N. A. Mortensen, D. N. Christodoulides, and M. Khajavikhan, "Direct generation of tunable orbital angular momentum beams in microring lasers with broadband exceptional points," arXiv preprint arXiv:1903.10108 (2019).   DOI
35 J. M. Lee, S. Factor, Z. Lin, I. Vitebskiy, F. M. Ellis, and T. Kottos, "Reconfigurable directional lasing modes in cavities with generalized PT symmetry," Phys. Rev. Lett. 112, 253902 (2014).   DOI
36 F.-J. Shu, C.-L. Zou, X.-B. Zou, and L. Yang, "Chiral symmetry breaking in a microring optical cavity by engineered dissipation," Phys. Rev. A 94, 013848 (2016).   DOI
37 W. R. Sweeney, C. W. Hsu, S. Rotter, and A. D. Stone, "Perfectly absorbing exceptional points and chiral absorbers," Phys. Rev. Lett. 122, 093901 (2019).   DOI
38 D. A. B. Miller, "Are optical transistors the logical next step?," Nat. Photonics 4, 3-5 (2010).   DOI
39 D. L. Sounas and A. Alu, "Non-reciprocal photonics based on time modulation," Nat. Photonics 11, 774-783 (2017).   DOI
40 S. Fan, R. Baets, A. Petrov, Z. Yu, J. D. Joannopoulos, W. Freude, A. Melloni, M. Popovic, M. Vanwolleghem, D. Jalas, M. Eich, M. Krause, H. Renner, E. Brinkmeyer, and C. R. Doerr, "Comment on "Nonreciprocal light propagation in a silicon photonic circuit"," Science 335, 38 (2012).
41 S. Yu, X. Piao, J. Hong, and N. Park, "Progress toward high-Q perfect absorption: A Fano antilaser," Phys. Rev. A 92, 011802 (2015).   DOI
42 D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popovic, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, "What is - and what is not - an optical isolator," Nat. Photonics 7, 579-582 (2013).   DOI
43 Y. Chong, L. Ge, H. Cao, and A. D. Stone, "Coherent perfect absorbers: time-reversed lasers," Phys. Rev. Lett. 105, 053901 (2010).   DOI
44 Y. D. Chong, L. Ge, and A. D. Stone, "PT-symmetry breaking and laser-absorber modes in optical scattering systems," Phys. Rev. Lett. 106, 093902 (2011).   DOI
45 J. Wiersig, "Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection," Phys. Rev. Lett. 112, 203901 (2014).   DOI
46 J. Wiersig, "Sensors operating at exceptional points: general theory," Phys. Rev. A 93, 033809 (2016).   DOI
47 W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, and L. Yang, "Exceptional points enhance sensing in an optical microcavity," Nature 548, 192-196 (2017).   DOI
48 J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, "On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator," Nat. Photonics 4, 46-49 (2010).   DOI
49 S. Yu, X. Piao, J. Hong, and N. Park, "Metadisorder for designer light in random systems," Sci. Adv. 2, e1501851 (2016).   DOI
50 L. Ge and A. D. Stone, "Parity-time symmetry breaking beyond one dimension: the role of degeneracy," Phys. Rev. X 4, 031011 (2014).
51 E. Rivet, A. Brandstötter, K. G. Makris, H. Lissek, S. Rotter, and R. Fleury, "Constant-pressure sound waves in non-Hermitian disordered media," Nat. Phys. 14, 942-947 (2018).   DOI
52 S. Yu, X. Piao, and N. Park, "Target decoupling in coupled systems resistant to random perturbation," Sci. Rep. 7, 2139 (2017).   DOI
53 S. Yu, X. Piao, and N. Park, "Bohmian photonics for independent control of the phase and amplitude of waves," Phys. Rev. Lett. 120, 193902 (2018).   DOI
54 K. G. Makris, Z. H. Musslimani, D. N. Christodoulides, and S. Rotter, "Constant-intensity waves and their modulation instability in non-Hermitian potentials," Nat. Commun. 6, 7257 (2015).   DOI
55 K. G. Makris, A. Brandstötter, P. Ambichl, Z. H. Musslimani, and S. Rotter, "Wave propagation through disordered media without backscattering and intensity variations," Light Sci. Appl. 6, e17035 (2017).   DOI
56 S. Pancharatnam, "Generalized theory of interference and its applications. Part. II. Partially coherent pencils," Proc. Indiana Acad. Sci. 44, 398-417 (1956).   DOI
57 M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. Lond. A 392, 45-57 (1984).   DOI
58 Y. Aharonov and J. Anandan, "Phase change during a cyclic quantum evolution," Phys. Rev. Lett. 58, 1593 (1987).   DOI
59 K. Soai, T. Shibata, H. Morioka, and K. Choji, "Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule," Nature 378, 767-768 (1995).   DOI
60 M. K. Gaillard, P. D. Grannis, and F. J. Sciulli, "The standard model of particle physics," Rev. Mod. Phys. 71, S96 (1999).   DOI
61 P. L. Polavarapu, "Optical rotation: recent advances in determining the absolute configuration," Chirality 14, 768-781 (2002).   DOI
62 Y. Tang and A. E. Cohen, "Optical chirality and its interaction with matter," Phys. Rev. Lett. 104, 163901 (2010).   DOI
63 K. Y. Bliokh and F. Nori, "Characterizing optical chirality," Phys. Rev. A 83, 021803(R) (2011).   DOI
64 Y. Tang and A. E. Cohen, "Enhanced enantioselectivity in excitation of chiral molecules by superchiral light," Science 332, 333-336 (2011).   DOI
65 W. D. Heiss, "Phases of wave functions and level repulsion," Eur. Phys. J. D 7, 1-4 (1999).   DOI
66 C. Dembowski, B. Dietz, H.-D. Graf, H. L. Harney, A. Heine, W. D. Heiss, and A. Richter, "Encircling an exceptional point," Phys. Rev. E 69, 056216 (2004).   DOI
67 R. Lefebvre, O. Atabek, M. Sindelka, and N. Moiseyev, "Resonance coalescence in molecular photodissociation," Phys. Rev. Lett. 103, 123003 (2009).   DOI
68 A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of bi-anisotropic materials: Theory and applications (Gordon and Breach Science, 2001).
69 A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett. 90, 107404 (2003).   DOI
70 J. B. Pendry, "A chiral route to negative refraction," Science 306, 1353-1355 (2004).   DOI
71 A. U. Hassan, B. Zhen, M. Soljacic, M. Khajavikhan, and D. N. Christodoulides, "Dynamically encircling exceptional points: Exact evolution and polarization state conversion," Phys. Rev. Lett. 118, 093002 (2017).   DOI
72 C. Dembowski, H. D. Graf, H. L. Harney, A. Heine, W. D. Heiss, H. Rehfeld, and A. Richter, "Experimental observation of the topological structure of exceptional points," Phys. Rev. Lett. 86, 787-790 (2001).   DOI
73 J. Doppler, A. A. Mailybaev, J. Bohm, U. Kuhl, A. Girschik, F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, "Dynamically encircling an exceptional point for asymmetric mode switching," Nature 537, 76-79 (2016).   DOI
74 X.-L. Zhang, S. Wang, B. Hou, and C. T. Chan, "Dynamically encircling exceptional points: in situ control of encircling loops and the role of the starting point," Phys. Rev. X 8, 021066 (2018).   DOI
75 J. W. Yoon, Y. Choi, C. Hahn, G. Kim, S. H. Song, K.-Y. Yang, J. Y. Lee, Y. Kim, C. S. Lee, J. K. Shin, H.-S. Lee, and P. Berini, "Time-asymmetric loop around an exceptional point over the full optical communications band," Nature 562, 86-90 (2018).   DOI
76 H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, "Topological energy transfer in an optomechanical system with exceptional points," Nature 537, 80-83 (2016).   DOI
77 R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, "Non-Hermitian physics and PT symmetry," Nat. Phys. 14, 11-19 (2018).   DOI
78 A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, "Photonic topological insulators," Nat. Mater. 12, 233-239 (2013).   DOI
79 H.-E. Lee, H.-Y. Ahn, J. Mun, Y. Y. Lee, M. Kim, N. H. Cho, K. Chang, W. S. Kim, J. Rho, and K. T. Nam, "Amino-acid-and peptide-directed synthesis of chiral plasmonic gold nanoparticles," Nature 556, 360-365 (2018).   DOI
80 L. Feng, R. El-Ganainy, and L. Ge, "Non-Hermitian photonics based on parity-time symmetry," Nat. Photonics 11, 752-762 (2017).   DOI
81 R. El-Ganainy, M. Khajavikhan, D. N. Christodoulides, and S. K. Ozdemir, "The dawn of non-Hermitian optics," Commun. Phys. 2, 37 (2019).   DOI
82 X.-L. Zhang, T. Jiang, H.-B. Sun, and C. T. Chan, "Dynamically encircling an exceptional point in anti-PT-symmetric systems: asymmetric mode switching for symmetry-broken states," arXiv preprint arXiv:1806.07649 (2018).
83 T. E. Lee, "Anomalous edge state in a non-Hermitian lattice," Phys. Rev. Lett. 116, 133903 (2016).   DOI
84 Q. Zhong, M. Khajavikhan, D. N. Christodoulides, and R. El-Ganainy, "Winding around non-Hermitian singularities," Nat. Commun. 9, 4808 (2018).   DOI
85 M.-A. Miri and A. Alu, "Exceptional points in optics and photonics," Science 363, eaar7709 (2019).   DOI
86 S. Longhi, "Parity-time symmetry meets photonics: A new twist in non-Hermitian optics," Europhys. Lett. 120, 64001 (2018).   DOI
87 A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, "Parity-time synthetic photonic lattices," Nature 488, 167-171 (2012).   DOI
88 X. Piao, S. Yu, J. Hong, and N. Park, "Spectral separation of optical spin based on antisymmetric Fano resonances," Sci. Rep. 5, 16585 (2015).   DOI
89 L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang, "Single-mode laser by parity-time symmetry breaking," Science 346, 972-975 (2014).   DOI
90 H. Hodaei, M.-A. Miri, M. Heinrich, D. N. Christodoulides, and M. Khajavikhan, "Parity-time-symmetric microring lasers," Science 346, 975-978 (2014).   DOI
91 D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F. Nori, "Edge modes, degeneracies, and topological numbers in non-Hermitian systems," Phys. Rev. Lett. 118, 040401 (2017).   DOI
92 A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, "Parity-time synthetic photonic lattices," Nature 488, 167-171 (2012).   DOI
93 E. Lustig, S. Weimann, Y. Plotnik, Y. Lumer, M. A. Bandres, A. Szameit, and M. Segev, "Photonic topological insulator in synthetic dimensions," Nature 567, 356-360 (2019).   DOI
94 K. Y. Bliokh, D. Smirnova, and F. Nori, "Quantum spin Hall effect of light," Science 348, 1448-1451 (2015).   DOI
95 S. Lieu, "Topological phases in the non-Hermitian Su-Schrieffer-Heeger model," Phys. Rev. B 97, 045106 (2018).   DOI
96 D. S. Wiersma, "Disordered photonics," Nat. Photonics 7, 188-196 (2013).   DOI
97 H. H. Sheinfux, Y. Lumer, G. Ankonina, A. Z. Genack, G. Bartal, and M. Segev, "Observation of Anderson localization in disordered nanophotonic structures," Science 356, 953-956 (2017).   DOI
98 S. Yu, X. Piao, and N. Park, "Disordered potential landscapes for anomalous delocalization and superdiffusion of light," ACS Photonics 5, 1499-1505 (2018).   DOI
99 L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, "Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators," Nat. Photonics 8, 524-529 (2014).   DOI
100 Z. H. Musslimani, K. G. Makris, R. El-Ganainy, and D. N. Christodoulides, "Optical solitons in PT periodic potentials," Phys. Rev. Lett. 100, 030402 (2008).   DOI
101 M.-A. Miri, M. Heinrich, R. El-Ganainy, and D. N. Christodoulides, "Supersymmetric optical structures," Phys. Rev. Lett. 110, 233902 (2013).   DOI
102 M. P. Hokmabadi, N. S. Nye, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, "Supersymmetric laser arrays," Science 363, 623-626 (2019).   DOI
103 M. Heinrich, M. A. Miri, S. Stutzer, R. El-Ganainy, S. Nolte, A. Szameit, and D. N. Christodoulides, "Supersymmetric mode converters," Nat. Commun. 5, 3698 (2014).   DOI