Browse > Article
http://dx.doi.org/10.3807/COPP.2017.1.2.157

Reduction of Gamma Distortion in Oblique Viewing Directions in Polymer-stabilized Vertical Alignment Liquid Crystal Mode  

Kim, Hyo Joong (Applied Materials Institute for BIN Convergence, Department of BIN Convergence Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University)
Lim, Young Jin (Applied Materials Institute for BIN Convergence, Department of BIN Convergence Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University)
Murali, G. (Applied Materials Institute for BIN Convergence, Department of BIN Convergence Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University)
Kim, Min Su (Applied Materials Institute for BIN Convergence, Department of BIN Convergence Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University)
Kim, Gi Heon (Electronics and Telecommunications Research Institute)
Kim, Yong Hae (Electronics and Telecommunications Research Institute)
Lee, Gi-Dong (Department of Electronics Engineering, Dong-A University)
Lee, Seung Hee (Applied Materials Institute for BIN Convergence, Department of BIN Convergence Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University)
Publication Information
Current Optics and Photonics / v.1, no.2, 2017 , pp. 157-162 More about this Journal
Abstract
In large liquid crystal displays, the image quality in an oblique viewing direction is a crucial issue. From this perspective, 8-domain polymer-stabilized vertical alignment (PS-VA) mode has been developed to suppress the color shift in oblique viewing directions, compared to that in 4-domain PS-VA mode. To realize the 8-domain PS-VA, the four domains in a pixel are each divided into two regions, such that applying different electric potentials result in different tilt angles in these two regions, while keeping four azimuthal directions in each domain. However, applying different voltages in a pixel causes drawbacks, such as requiring additional processes to construct a capacitor and a transistor, which will further reduce the aperture ratio. Here we propose a different approach to form the 8-domain, by controlling surface polar anchoring energy and the width of patterned electrodes in two regions of a pixel. As a result, the gamma-distortion index (GDI), measured at an azimuthal angle of $0^{\circ}$, is reduced by about 23% and 8%, compared to that of a conventional 4-domain at polar angles of $30^{\circ}$ and $60^{\circ}$ respectively.
Keywords
Liquid crystal display; Vertical alignment; 8-domain; Color shift;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. H. Kim, W. S. Kang, H. S. Choi, K. Park, J. H. Lee, S. Yoon, S. Yoon, G. D. Lee, and S. H. Lee, "Effect of surface anchoring energy on electro-optic characteristics of a fringefield switching liquid crystal cell," J. Phys. D: Appl. Phys. 48, 465506 (2015).   DOI
2 K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, Y. Koike, and K. A. Okamoto, "A new MVA-LCD by polymer sustained alignment technology," SID Int. Symp. Dig. Tech. Pap. 35, 1200-1203 (2004).
3 K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, "Alignment technologies and applications of liquid crystal devices," Liquid Crystals Book Series (London: Taylor & Francis) Chapter 2.2.3, Alignment mechanisms. 30-32 (2005).
4 M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta, "A standard default color space for the internet: sRGB 4th IS&T/SID Color Imaging," Conf. (Arizona,USA). 238-246 (1992).
5 B. J. Mun, T. Y. Jin, G. D. Lee, Y. J. Lim, and S. H. Lee, "Optical approach to improve the ${\gamma}$ curve in a verticalalignment liquid-crystal cell," Opt. Lett. 38, 799-801 (2013).   DOI
6 R. A. Soref, "Field effect in nematic liquid crystals obtained with interdigital electrodes," J. Appl. Phys. 45, 5466-5468 (1974).   DOI
7 S. H. Lee, S. M. Lee, H. Y. Kim, J. M. Kim, S. H. Hong, Y. H. Jeong, C. H. Park, Y. J. Choi, J. Y. Lee, J. W. Koh, and H. S. Park, "18.1"Ultra-FFS TFT-LCD with super image quality and fast response time," SID Int. Symp. Dig. Tech. Pap. 32, 484-487 (2001).
8 M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995).   DOI
9 S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," Appl. Phys. Lett. 73, 2881-2883 (1998).   DOI
10 S. H. Hong, I. C. Park, H. Y. Kim, and S. H. Lee, "Electrooptic characteristic of fringe field switching mode depending on rubbing direction," Japan. J. Appl. Phys. 39, L527-530 (2000).   DOI
11 A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, "A super-high image quality multi-domain vertical alignment LCD by new rubbing-less technology," SID Int. Symp. Dig. Tech. Pap. 29, 1077-1080 (1998).
12 K. H. Kim, K. Lee, S. B. Park, J. K. Song, S. N. Kim, and J. H. Souk, "Domain divided vertical alignment mode with optimized fringe field effect," in Proc. of the 18th International Display Research Conference/Asia Display (Sheraton Walker-Hill, Korea, Sept. 1998), pp. 383-386.
13 Y. Taniguchi, H. Inoue, M. Sawasaki, Y. Tanaka, T. Hasegawa, T. Sasaki, Y. Koike, and K. Okamoto, "An ulta-high-quality MVA-LCD using a new multi-layer CF resin spacer and black-matrix," SID Int. Symp. Dig. Tech. Pap. 31, 378-381 (2000).
14 S. Kataoka, A. Takeda, H. Tsuda, Y. Koike, H. Inoue, T. Fujikawa, T. Sasabayashi, and K. Okamoto, "A new MVALCD with jagged shaped pixel electrodes," SID Int. Symp. Dig. Tech. Pap. 31, 1066-1069 (2000).
15 S. I. Jun, W. Y. Park, I. G. Kim, J. Y. Lee, and J. H. Souk, "Panel transmittance analysis of PVA mode and a nobel pixel design," SID Int. Symp. Dig. Tech. Pap. 33, 208-211 (2002).
16 Y. Yamada, K. Miyachi, M. Kubo, S. Mizushima, Y. Ishii, and M. Hijikigawa, "Fast response and wide-viewing angle technologies for LC-TV application," 9th Int. Display Work shops (Hiroshima, Japan). 203-206 (2002).
17 M. Yoshiga, M. Fukumoto, Y. Hamawaki, T. Unate, and T. Sunata, "Control of the LC orientation in a vertical aligned AMLCD with didived domains," 7th Int. Display Workshops (Kobe, Japan). 211-214 (2000).
18 K. H. Kim, J. J. Ryu, S. B. Park, J. K. Song, B. W. Lee, J. S. Byun, and J. H. Souk, "Current status and advance in PVA technology for high performance LCD monitor application," 1st Int. Meeting on Information Display (Daegu, Korea). 58-61 (2001).
19 Y. Kume, N. Yamada, S. Kozaki, H. Kishishita, F. Funada, and M. Hijikigawa, "Advanced ASM mode (Axially symmetric aligned microcell mode): Improvement of display performances by using negative dielectric liquid crystal," SID Int. Symp. Dig. Tech. Pap. 29, 1089-1092 (1998).
20 S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, and S. H. Lee, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007).   DOI
21 S. M. Kim, I. Y. Cho, W. I. Kim, K. U. Jeong, S. H. Lee, G. D. Lee, J. Son, J. J. Lyu, and K. H. Kim, "Surfacemodification on vertical alignment layer using UV-curable reactive mesogens," Japan. J. Appl. Phys. 48, 032405 (2009).   DOI
22 S. B. Park, J. J. Lyu, Y. S. Um, H. W. Do, S. N. Ahn, K. W. Choi, K. H. Kim, and S. S. Kim, "A novel charge-shared S-PVA technology," SID Int. Symp. Dig. Tech. Pap. 36, 1252-1254 (2007).
23 R. Lu, S. T. Wu, and S. H. Lee, "Reducing the color shift if a multidomain vertical alignment liquid crystal display using dual threshold voltages," Appl. Phys. Lett. 92, 051114 (2008).   DOI
24 K. H. Kim, N. D. Kim, D. G. Kim, S. Y. Kim, J. H. Park, S. S. Seomun, B. H. Berkeley, and S. S. Kim, "A 57-in. wide UXGA TFT-LCD for HDTV application," SID Int. Symp. Dig. Tech. Pap. 35, 106-109 (2004).
25 S. S. Kim, "Super PVA sets new state-of-the-art for LCDTV," SID Int. Symp. Dig. Tech. Pap. 35, 760-763 (2004).
26 S. S. Kim, B. H. Berkeley, K. H. Kim, and J. K. Song, "New technologies for advanced LCD-TV performance," J. Soc. Inf. Disp. 12/4, 760-763 (2004).
27 S. S. Kim, "The world's Largest (82-in.) TFT-LCD," SID Int. Symp. Dig. Tech. Pap. 36, 1842-1847 (2005).
28 Y. P. Huang, W. K. Huang, C. H. Tsao, J. J. Su, H. L. Hou, L. Liao, C. Y. Lee, T. R. Chang, Y. C. Lin, and P. L. Chen, "Additional refresh technology (ART) of advanced-MVA (AMVA) mode for high quality LCDs," SID Int. Symp. Dig. Tech. Pap. 38, 1010-1013 (2007).
29 S. S. Kim, B. H. Berkeley, and T. Kim, "Advancements for highest-performance LCD-TV," SID Int. Symp. Dig. Tech. Pap. 37, 1938-1941 (2006).
30 S. S. Kim, B. H. You, J. H. Cho, D. G. Kim, B. H. Berkeley, and N. D. Kim, "An 82-in. ultra-definition 120-Hz LCD TV using new driving scheme and advanced Super PVA technology," J. Soc. Inf. Disp. 17/2, 71-78 (2009).   DOI
31 S. J. Kim, K. C. Shin, H. Kim, H. G. Oh, J. Jung, and H. S. Kim, "Development of a resistivity division driving method for the vertically placed RGB pixels of the eight-domain thin-film-transistors liquid crystal display," J. Inf. Disp. 14, 93-96 (2013).   DOI
32 X. Nie, R. Lu, H. Xianyu, T. X. Wu, and S. T. Wu, "Anchoring energy and cell gap effects on liquid crystal response time," J. Appl. Phys. 101, 103110 (2007).   DOI