Browse > Article
http://dx.doi.org/10.3807/COPP.2022.6.6.550

Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging  

Park, Sangjun (Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea)
Min, Cheol Hong (Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea)
Han, Seokyoung (Department of Mechanical Engineering, University of Louisville)
Choi, Eunjin (Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea)
Cho, Kyung-Ok (Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea)
Jang, Hyun-Jong (Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea)
Kim, Moonseok (Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea)
Publication Information
Current Optics and Photonics / v.6, no.6, 2022 , pp. 550-564 More about this Journal
Abstract
Optical microscopy is a useful tool for study in the biological sciences. With an optical microscope, we can observe the micro world of life such as tissues, cells, and proteins. A fluorescent dye or a fluorescent protein provides an opportunity to mark a specific target in the crowd of biological samples, so that an image of a specific target can be observed by an optical microscope. The optical microscope, however, is constrained in resolution due to diffraction limit. Super-resolution microscopy made a breakthrough with this diffraction limit. Using a super-resolution microscope, many biomolecules are observed beyond the diffraction limit in cells. In the case of volumetric imaging, the super-resolution techniques are only applied to a limited area due to long imaging time, multiple scattering of photons, and sample-induced aberration in deep tissue. In this article, we review recent advances in super-resolution microscopy for volumetric imaging. The super-resolution techniques have been integrated with various modalities, such as a line-scan confocal microscope, a spinning disk confocal microscope, a light sheet microscope, and point spread function engineering. Super-resolution microscopy combined with adaptive optics by compensating for wave distortions is a promising method for deep tissue imaging and biomedical applications.
Keywords
Adaptive optics; Super-resolution microscope; Volumetric imaging; Wavefront shaping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Padmanabhan, A. Kneynsberg, and J. Gotz, "Super-resolution microscopy: a closer look at synaptic dysfunction in Alzheimer disease," Nat. Rev. Neurosci. 22, 723-740 (2021).   DOI
2 L. Chu, J. Tyson, J. E. Shaw, F. Rivera-Molina, A. J. Koleske, A. Schepartz, and D. K. Toomre, "Two-color nanoscopy of organelles for extended times with HIDE probes," Nat. Commun. 11, 4271 (2020).   DOI
3 I. Kounatidis, M. L. Stanifer, M. A. Phillips, P. Paul-Gilloteaux, X. Heiligenstein, H. Wang, C. A. Okolo, T. M. Fish, M. C. Spink, D. I. Stuart, I. Davis, S. Boulant, J. M. Grimes, I. M. Dobbie, and M. Harkiolaki, "3D Correlative cryo-structured illumination fluorescence and soft X-ray microscopy elucidates reovirus intracellular release pathway," Cell 182, 515-530.e17 (2020).   DOI
4 M. Bates, B. Huang, G. T. Dempsey, and X. Zhuang, "Multicolor super-resolution imaging with photo-switchable fluorescent probes," Science 317, 1749-1753 (2007).   DOI
5 Y. Li, M. Mund, P. Hoess, J. Deschamps, U. Matti, B. Nijmeijer, V. J. Sabinina, J. Ellenberg, I. Schoen, and J. Ries, "Real-time 3D single-molecule localization using experimental point spread functions," Nat. Methods 15, 367-369 (2018).   DOI
6 J. Kim, M. Wojcik, Y. Wang, S. Moon, E. A. Zin, N. Marnani, Z. L. Newman, J. G. Flannery, K. Xu, and X. Zhang, "Oblique-plane single-molecule localization microscopy for tissues and small intact animals," Nat. Methods 16, 853-857 (2019).   DOI
7 M. Weigert, U. Schmidt, T. Boothe, A. Muller, A. Dibrov, A. Jain, B. Wilhelm, D. Schmidt, C. Broaddus, S. Culley, M. Rocha-Martins, F. Segovia-Miranda, C. Norden, R. Henriques, M. Zerial, M. Solimena, J. Rink, P. Tomancak, L. Royer, F. Jug, and E. W. Myers, "Content-aware image restoration: pushing the limits of fluorescence microscopy," Nat. Methods 15, 1090-1097 (2018).   DOI
8 Y. Wu, X. Han, Y. Su, M. Glidewell, J. S. Daniels, J. Liu, T. Sengupta, I. Rey-Suarez, R. Fischer, A. Patel, C. Combs, J. Sun, X. Wu, R. Christensen, C. Smith, L. Bao, Y. Sun, L. H. Duncan, J. Chen, Y. Pommier, Y.-B. Shi, E. Murphy, S. Roy, A. Upadhyaya, D. Colon-Ramos, P. La Riviere, and H. Shroff, "Multiview confocal super-resolution microscopy," Nature 600, 279-284 (2021).   DOI
9 S. Liu and F. Huang, "Enhanced 4Pi single-molecule localization microscopy with coherent pupil based localization," Commun. Biol. 3, 220 (2020).   DOI
10 E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, "Deep-STORM: super-resolution single-molecule microscopy by deep learning," Optica 5, 458-464 (2018).   DOI
11 H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, "Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics," Nat. Methods 5, 417-423 (2008).   DOI
12 M. Guo, P. Chandris, J. P. Giannini, A. J. Trexler, R. Fischer, J. Chen, H. D. Vishwasrao, I. Rey-Suarez, Y. Wu, X. Wu, C. M. Waterman, G. H. Patterson, A. Upadhyaya, J. W. Taraska, and H. Shroff, "Single-shot super-resolution total internal reflection fluorescence microscopy," Nat. Methods 15, 425-428 (2018).   DOI
13 T. Woo, S. H. Jung, C. Ahn, B. Hwang, H. Kim, J. H. Kang, and J.-H. Park, "Tunable SIM: observation at varying spatiotemporal resolutions across the FOV," Optica 7, 973-980 (2020).   DOI
14 A. Vaziri, J. Tang, H. Shroff, and C. V. Shank, "Multilayer three-dimensional super resolution imaging of thick biological samples," Proc. Natl. Acad. Sci. U. S. A. 105, 20221-20226 (2008).   DOI
15 J. Kwon, J.-S. Park, M. Kang, S. Choi, J. Park, G. T. Kim, C. Lee, S. Cha, H.-W. Rhee, and S.-H. Shim, "Bright ligand-activatable fluorescent protein for high-quality multicolor live-cell super-resolution microscopy," Nat. Commun. 11, 273 (2020).   DOI
16 L. Xie, P. Dong, X. Chen, T.-H. S. Hsieh, S. Banala, M. De Marzio, B. P. English, Y. Qi, S. K. Jung, K.-R. Kieffer-Kwon, W. R. Legant, A. S. Hansen, A. Schulmann, R. Casellas, B. Zhang, E. Betzig, L. D. Lavis, H. Y. Chang, R. Tjian, and Z. Liu, "3D ATAC-PALM: super-resolution imaging of the accessible genome," Nat. Methods 17, 430-436 (2020).   DOI
17 B. Huang, W. Wang, M. Bates, and X. Zhuang, "Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy," Science 319, 810-813 (2008).   DOI
18 A. Dani, B. Huang, J. Bergan, C. Dulac, and X. Zhuang, "Superresolution imaging of chemical synapses in the brain," Neuron 68, 843-856 (2010).   DOI
19 N. Ji, D. E. Milkie, and E. Betzig, "Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues," Nat. Methods 7, 141-147 (2010).   DOI
20 B. Huang, H. Babcock, and X. Zhuang, "Breaking the diffraction barrier: Super-resolution imaging of cells," Cell 143, 1047-1058 (2010).   DOI
21 A. Markwirth, M. Lachetta, V. Monkemoller, R. Heintzmann, W. Hubner, T. Huser, and M. Muller, "Video-rate multi-color structured illumination microscopy with simultaneous realtime reconstruction," Nat. Commun. 10, 4315 (2019).   DOI
22 R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise nanometer localization analysis for individual fluorescent probes," Biophys. J. 82, 2775-2783 (2002).   DOI
23 B.-C. Chen, W. R. Legant, K. Wang, L. Shao, D. E. Milkie, M. W. Davidson, C. Janetopoulos, X. S. Wu, J. A. Hammer III, Z. Liu, B. P. English, Y. Mimori-Kiyosue, D. P. Romero, A. T. Ritter, J. Lippincott-Schwartz, L. Fritz-Laylin, R. D. Mullins, D. M. Mitchell, J. N. Bembenek, A.-C. Reymann, R. Bohme, S. W. Grill, J. T. Wang, G. Seydoux, U. S. Tulu, D. P. Kiehart, and E. Betzig, "Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution," Science 346, 1257998 (2014).   DOI
24 J. Heine, M. Reuss, B. Harke, E. D'Este, S. J. Sahl, and S. W. Hell, "Adaptive-illumination STED nanoscopy," Proc. Natl. Acad. Sci. U. S. A. 114, 9797-9802 (2017).   DOI
25 A. Barbotin, S. Galiani, I. Urbancic, C. Eggeling, and M. J. Booth, "Adaptive optics allows STED-FCS measurements in the cytoplasm of living cells," Opt. Express 27, 23378-23395 (2019).   DOI
26 M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. U. S. A. 102, 13081-13086 (2005).   DOI
27 E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins at nanometer resolution," Science 313, 1642-1645 (2006).   DOI
28 A. G. York, A. Ghitani, A. Vaziri, M. W. Davidson, and H. Shroff, "Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes," Nat. Methods 8, 327-333 (2011).   DOI
29 S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Opt. Lett. 19, 780-782 (1994).   DOI
30 S.-H. Shim, C. Xia, G. Zhong, H. P. Babcock, J. C. Vaughan, B. Huang, X. Wang, C. Xu, G.-Q. Bi, and X. Zhuang, "Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes," Proc. Natl. Acad. Sci. U. S. A. 109, 13978-13983 (2012).   DOI
31 D. Kim, Z. Zhang, and K. Xu, "Spectrally resolved super-resolution microscopy unveils multipath reaction pathways of single spiropyran molecules," J. Am. Chem. Soc. 139, 9447-9450 (2017).   DOI
32 M. Klevanski, F. Herrmannsdoerfer, S. Sass, V. Venkataramani, M. Heilemann, and T. Kuner, "Automated highly multiplexed super-resolution imaging of protein nano-architecture in cells and tissues," Nat. Commun. 11, 1552 (2020).   DOI
33 C. Laplante, F. Huang, I. R. Tebbs, J. Bewersdorf, and T. D. Pollard, "Molecular organization of cytokinesis nodes and contractile rings by super-resolution fluorescence microscopy of live fission yeast," Proc. Natl. Acad. Sci. U. S. A. 113, E5876-E5885 (2016).
34 P. Kanchanawong, G. Shtengel, A. M. Pasapera, E. B. Ramko, M. W. Davidson, H. F. Hess, and C. M. Waterman, "Nanoscale architecture of integrin-based cell adhesions," Nature 468, 580-584 (2010).   DOI
35 A. Chmyrov, J. Keller, T. Grotjohann, M. Ratz, E. d'Este, S. Jakobs, C. Eggeling, and S. W. Hell, "Nanoscopy with more than 100,000 'doughnuts'," Nat. Methods 10, 737-740 (2013).   DOI
36 D. K. Tiwari, Y. Arai, M. Yamanaka, T. Matsuda, M. Agetsuma, M. Nakano, K. Fujita, and T. Nagai, "A fast- and positively photoswitchable fluorescent protein for ultralow-laser-power RESOLFT nanoscopy," Nat. Methods 12, 515-518 (2015).   DOI
37 R. Turcotte, Y. Liang, M. Tanimoto, Q. Zhang, Z. Li, M. Koyama, E. Betzig, and N. Ji, "Dynamic super-resolution structured illumination imaging in the living brain," Proc. Natl. Acad. Sci. U. S. A. 116, 9586-9591 (2019).   DOI
38 L. A. Masullo, A. Boden, F. Pennacchietti, G. Coceano, M. Ratz, and I. Testa, "Enhanced photon collection enables four dimensional fluorescence nanoscopy of living systems," Nat. Commun. 9, 3281 (2018).   DOI
39 F. Huang, G. Sirinakis, E. S. Allgeyer, L. K. Schroeder, W. C. Duim, B. Kromann, T. Phan, F. E. Rivera-Molina, J. R. Myers, I. Irnov, M. Lessard, Y. Zhang, M. A. Handel, C. JacobsWagner, C. P. Lusk, J. E. Rothman, D. Toomre, M. J. Booth, and J. Bewersdorf, "Ultra-High resolution 3D imaging of whole cells," Cell 166, 1028-1040 (2016).   DOI
40 B. R. Patton, D. Burke, D. Owald, T. J. Gould, J. Bewersdorf, and M. J. Booth, "Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics," Opt. Express 24, 8862-8876 (2016).   DOI
41 Y. Chen, W. Liu, Z. Zhang, C. Zheng, Y. Huang, R. Cao, D. Zhu, L. Xu, M. Zhang, Y.-H. Zhang, J. Fan, L. Jin, Y. Xu, C. Kuang, and X. Liu, "Multi-color live-cell super-resolution volume imaging with multi-angle interference microscopy," Nat. Commun. 9, 4818 (2018).   DOI
42 F. Balzarotti, Y. Eilers, K. C. Gwosch, A. H. Gynna, V. Westphal, F. D. Stefani, J. Elf, and S. W. Hell, "Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes," Science 355, 606-612 (2017).   DOI
43 Z. Fu, D. Peng, M. Zhang, F. Xue, R. Zhang, W. He, T. Xu, and P. Xu, "mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM," Nat. Methods 17, 55-58 (2020).   DOI
44 S. Strauss and R. Jungmann, "Up to 100-fold speed-up and multiplexing in optimized DNA-PAINT," Nat. Methods 17, 789-791 (2020).   DOI
45 J. Lee, Y. Miyanaga, M. Ueda, and S. Hohng, "Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging," Biophys. J. 103, 1691-1697 (2012).   DOI
46 W. R. Legant, L. Shao, J. B. Grimm, T. A. Brown, D. E. Milkie, B. B. Avants, L. D. Lavis, and E. Betzig, "High-density three-dimensional localization microscopy across large volumes," Nat. Methods 13, 359-365 (2016).   DOI
47 F. Schueder, J. Lara-Gutierrez, B. J. Beliveau, S. K. Saka, H. M. Sasaki, J. B. Woehrstein, M. T. Strauss, H. Grabmayr, P. Yin, and R. Jungmann, "Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT," Nat. Commun. 8, 2090 (2017).   DOI
48 A. Aristov, B. Lelandais, E. Rensen, and C. Zimmer, "ZOLA3D allows flexible 3D localization microscopy over an adjustable axial range," Nat. Commun. 9, 2409 (2018).   DOI
49 A.-K. Gustavsson, P. N. Petrov, M. Y. Lee, Y. Shechtman, W. E. Moerner, "3D single-molecule super-resolution microscopy with a tilted light sheet," Nat. Commun. 9, 123 (2018).   DOI
50 N. Ji, "Adaptive optical fluorescence microscopy," Nat. Methods 14, 374-380 (2017).   DOI
51 K. S. Grussmayer, S. Geissbuehler, A. Descloux, T. Lukes, M. Leutenegger, A. Radenovic, and T. Lasser, "Spectral cross-cumulants for multicolor super-resolved SOFI imaging," Nat. Commun. 11, 3023 (2020).   DOI
52 L. von Chamier, R. F. Laine, and R. Henriques, "Artificial intelligence for microscopy: what you should know," Biochem. Soc. Trans. 47, 1029-1040 (2019).   DOI
53 H. Deschout, T. Lukes, A. Sharipov, D. Szlag, L. Feletti, W. Vandenberg, P. Dedecker, J. Hofkens, M. Leutenegger, T. Lasser, and A. Radenovic, "Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions," Nat. Commun. 7, 13693 (2016).   DOI
54 T. Lukes, D. Glatzova, Z. Kvicalova, F. Levet, A. Benda, S. Letschert, M. Sauer, T. Brdicka, T. Lasser, and M. Cebecauer, "Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging," Nat. Commun. 8, 1731 (2017).   DOI
55 R. Jungmann, C. Steinhauer, M. Scheible, A. Kuzyk, P. Tinnefeld, and F. C. Simmel, "Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA Origami," Nano Lett. 10, 4756-4761 (2010).   DOI
56 B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, "Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution," Nat. Methods 5, 1047-1052 (2008).   DOI
57 S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, and W. Choi, "Deep optical imaging within complex scattering media," Nat. Rev. Phys. 2, 141-158 (2020).   DOI
58 M. J. Mlodzianoski, P. J. Cheng-Hathaway, S. M. Bemiller, T. J. McCray, S. Liu, D. A. Miller, B. T. Lamb, G. E. Landreth, and F. Huang, "Active PSF shaping and adaptive optics enable volumetric localization microscopy through brain sections," Nat. Methods 15, 583-586 (2018).   DOI
59 Y. M. Sigal, C. M. Speer, H. P. Babcock, X. Zhuang, "Mapping synaptic input fields of neurons with super-resolution imaging," Cell 163, 493-505 (2015).   DOI
60 M. J. Rust, M. Bates, and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Methods 3, 793-796 (2006).   DOI
61 J. Lee, S. Park, and S. Hohng, "Accelerated FRET-PAINT microscopy," Mol. Brain 11, 70 (2018).   DOI
62 F. Schueder, J. Stein, F. Stehr, A. Auer, B. Sperl, M. T. Strauss, P. Schwille, and R. Jungmann, "An order of magnitude faster DNA-PAINT imaging by optimized sequence design and buffer conditions," Nat. Methods 16, 1101-1104 (2019).   DOI
63 A. Archetti, E. Glushkov, C. Sieben, A. Stroganov, A. Radenovic, and S. Manley, "Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging," Nat. Commun. 10, 1267 (2019).   DOI
64 A. Auer, M. T. Strauss, T. Schlichthaerle, and R. Jungmann, "Fast, background-free DNA-PAINT imaging using FRET-based probes," Nano Lett. 17, 6428-6434 (2017).   DOI
65 T. Dertinger, R. Colyer, G. Iyer, S. Weiss, and J. Enderlein, "Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI)," Proc. Natl. Acad. Sci. U. S. A. 106, 22287-22292 (2009).   DOI
66 D. Mahecic, D. Gambarotto, K. M. Douglass, D. Fortun, N. Banterle, K. A. Ibrahim, M. Le Guennec, P. Gonczy, V. Hamel, P. Guichard, and S. Manley, "Homogeneous multifocal excitation for high-throughput super-resolution imaging," Nat. Methods 17, 726-733 (2020).   DOI
67 J. Antonello, A. Barbotin, E. Z. Chong, J. Rittscher, and M. J. Booth, "Multi-scale sensorless adaptive optics: application to stimulated emission depletion microscopy," Opt. Express 28, 16749-16763 (2020).   DOI
68 M. Zurauskas, I. M. Dobbie, R. M. Parton, M. A. Phillips, A. Gohler, I. Davis, and M. J. Booth, "IsoSense: frequency enhanced sensorless adaptive optics through structured illumination," Optica 6, 370-379 (2019).   DOI
69 Z. Li, Q. Zhang, S.-W. Chou, Z. Newman, R. Turcotte, R. Natan, Q. Dai, E. Y. Isacoff, and N. Ji, "Fast widefield imaging of neuronal structure and function with optical sectioning in vivo," Sci. Adv. 6, eaaz3870 (2020).   DOI
70 S. Liu, H. Huh, S.-H. Lee, and F. Huang, "Three-dimensional single-molecule localization microscopy in whole-cell and tissue specimens," Annu. Rev. Biomed. Eng. 22, 155-184 (2020).   DOI
71 L. Mockl and W. E. Moerner, "Super-resolution microscopy with single molecules in biology and beyond-Essentials, current trends, and future challenges," J. Am. Chem. Soc. 142, 17828-17844 (2020).   DOI
72 J. M. Brockman, H. Su, A. T. Blanchard, Y. Duan, T. Meyer, M. E. Quach, R. Glazier, A. Bazrafshan, R. L. Bender, A. V. Kellner, H. Ogasawara, R. Ma, F. Schueder, B. G. Petrich, R. Jungmann, R. Li, A. L. Mattheyses, Y. Ke, and K. Salaita, "Live-cell super-resolved PAINT imaging of piconewton cellular traction forces," Nat. Methods 17, 1018-1024 (2020).   DOI
73 R. Lin, E. T. Kipreos, J. Zhu, C. H. Khang, and P. Kner, "Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics," Nat. Commun. 12, 3148 (2021).   DOI
74 Y. M. Sigal, R. Zhou, and X. Zhuang, "Visualizing and discovering cellular structures with super-resolution microscopy," Science 361, 880-887 (2018).   DOI
75 S.-H. Shim, R. A. Everley, S. P. Gygi, X. Zhuang, and D. E. Clapham, "Structurally distinct Ca2+ signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility," Cell 157, 808-822 (2014).   DOI
76 L. Jin, B. Liu, F. Zhao, S. Hahn, B. Dong, R. Song, T. C. Elston, Y. Xu, and K. M. Hahn, "Deep learning enables structured illumination microscopy with low light levels and enhanced speed," Nat. Commun. 11, 1934 (2020).   DOI
77 M. G. M. Velasco, M. Zhang, J. Antonello, P. Yuan, E. S. Allgeyer, D. May, O. M'Saad, P. Kidd, A. E. S. Barentine, V. Greco, J. Grutzendler, M. J. Booth, and J. Bewersdorf, "3D super-resolution deep-tissue imaging in living mice," Optica 8, 442-450 (2021).   DOI
78 M. F. Juette, T. J. Gould, M. D. Lessard, M. J. Mlodzianoski, B. S. Nagpure, B. T. Bennett, S. T. Hess, and J. Bewersdorf "Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples," Nat. Methods 5, 527-529 (2008).   DOI
79 D. Aquino, A. Schonle, C. Geisler, C. V. Middendorff, C. A. Wurm, Y. Okamura, T. Lang, S. W. Hell, and A. Egner, "Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores," Nat. Methods 8, 353-359 (2011).   DOI
80 S. W. Hell and M. Kroug, "Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit," Appl. Phys. B 60, 495-497 (1995).   DOI
81 S. T. Hess, T. P. K. Girirajan, and M. D. Mason, "Ultra-high resolution imaging by fluorescence photoactivation localization microscopy," Biophys. J. 91, 4258-4272 (2006).   DOI
82 G. Shtengel, J. A. Galbraith, C. G. Galbraith, J. LippincottSchwartz, J. M. Gillette, S. Manley, R. Sougrat, C. M. Waterman, P. Kanchanawong, M. W. Davidson, R. D. Fetter, and H. F. Hess, "Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure," Proc. Natl. Acad. Sci. U. S. A. 106, 3125-3130 (2009).   DOI
83 U. Bohm, S. W. Hell, and R. Schmidt, "4Pi-RESOLFT nanoscopy," Nat. Commun. 7, 10504 (2016).   DOI
84 S. Geissbuehler, A. Sharipov, A. Godinat, N. L. Bocchio, P. A. Sandoz, A. Huss, N. A. Jensen, S. Jakobs, J. Enderlein, F. G. van der Goot, E. A. Dubikovskaya, T. Lasser, and M. Leutenegger, "Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging," Nat. Commun. 5, 5830 (2014).   DOI
85 F. Moser, V. Prazak, V. Mordhorst, D. M. Andrade, L. A. Baker, C. Hagen, K. Grunewald, and R. Kaufmann, "Cryo-SOFI enabling low-dose super-resolution correlative light and electron cryo-microscopy," Proc. Natl. Acad. Sci. U. S. A. 116, 4804-4809 (2019).   DOI
86 N. Liu, M. Dai, S. K. Saka, and P. Yin, "Super-resolution labelling with Action-PAINT," Nat. Chem. 11, 1001-1008 (2019).   DOI
87 J. Lee, S. Park, W. Kang, and S. Hohng, "Accelerated super-resolution imaging with FRET-PAINT," Mol. Brain 10, 63 (2017).   DOI
88 D. Sage, T.-A. Pham, H. Babcock, T. Lukes, T. Pengo, J. Chao, R. Velmurugan, A. Herbert, A. Agrawal, S. Colabrese, A. Wheeler, A. Archetti, B. Rieger, R. Ober, G. M. Hagen, J.-B. Sibarita, J. Ries, R. Henriques, M. Unser, and S. Holden, "Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software," Nat. Methods 16, 387-395 (2019).   DOI
89 S. Strauss, P. C. Nickels, M. T. Strauss, V. J. Sabinina, J. Ellenberg, J. D. Carter, S. Gupta, N. Janjic, and R. Jungmann, "Modified aptamers enable quantitative sub-10-nm cellular DNA-PAINT imaging," Nat. Methods 15, 685-688 (2018).   DOI
90 N. S. Deussner-Helfmann, A. Auer, M. T. Strauss, S. Malkusch, M. S. Dietz, H.-D. Barth, R. Jungmann, and M. Heilemann, "Correlative Single-Molecule FRET and DNA-PAINT Imaging," Nano Lett. 18, 4626-4630 (2018).   DOI
91 S. Culley, D. Albrecht, C. Jacobs, P. M. Pereira, C. Leterrier, J. Mercer, and R. Henriques, "Quantitative mapping and minimization of super-resolution optical imaging artifacts," Nat. Methods 15, 263-266 (2018).   DOI
92 L. Barna, B. Dudok, V. Miczan, A. Horvath, Z. I Laszlo, and I. Katona, "Correlated confocal and super-resolution imaging by VividSTORM," Nat. Protoc. 11, 163-183 (2016).   DOI
93 P. Bon, J. Linares-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy, and L. Cognet, "Self-interference 3D super-resolution microscopy for deep tissue investigations," Nat. Methods 15, 449-454 (2018).   DOI
94 C.-H. Lu, W.-C. Tang, Y.-T. Liu, S.-W. Chang, F. C. M. Wu, C.-Y. Chen, Y.-C. Tsai, S.-M. Yang, C.-W. Kuo, Y. Okada, Y.-K. Hwu, P. Chen, and B.-C. Chen, "Lightsheet localization microscopy enables fast, large-scale, and three-dimensional super-resolution imaging," Commun. Biol. 2, 177 (2019).   DOI
95 C. Cabriel, N. Bourg, P. Jouchet, G. Dupuis, C. Leterrier, A. Baron, M.-A. Badet-Denisot, B. Vauzeilles, E. Fort, and S. Leveque-Fort, "Combining 3D single molecule localization strategies for reproducible bioimaging," Nat. Commun. 10, 1980 (2019).   DOI
96 V. Curcio, L. A. Aleman-Castaneda, T. G. Brown, S. Brasselet, and M. A. Alonso, "Birefringent Fourier filtering for single molecule coordinate and height super-resolution imaging with dithering and orientation," Nat. Commun. 11, 5307 (2020).   DOI
97 E. Abbe, "Ueber einen neuen Beleuchtungsapparat am Mikroskop," Archiv fur Mikroskopische Anatomie 9, 469-480 (1873).   DOI
98 F. Xu, D. Ma, K. P. MacPherson, S. Liu, Y. Bu, Y. Wang, Y. Tang, C. Bi, T. Kwok, A. A. Chubykin, P. Yin, S. Calve, G. E. Landreth, and F. Huang, "Three-dimensional nanoscopy of whole cells and tissues with in situ point spread function retrieval," Nat. Methods 17, 531-540 (2020).   DOI
99 S. Jia, J. C. Vaughan, and X. Zhuang, "Isotropic three-dimensional super-resolution imaging with a self-bending point spread function," Nat. Photonics 8, 302-306 (2014).   DOI
100 S. Park, W. Kang, Y.-D. Kwon, J. Shim, S. Kim, B.-K. Kaang, and S. Hohng, "Superresolution fluorescence microscopy for 3D reconstruction of thick samples," Mol. Brain 11, 17 (2018).   DOI
101 K. C. Gwosch, J. K. Pape, F. Balzarotti, P. Hoess, J. Ellenberg, J. Ries, and S. W. Hell, "MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells," Nat. Methods 17, 217-224 (2020).   DOI
102 J. Cnossen, T. Hinsdale, R. O. Thorsen, M. Siemons, F. Schueder, R. Jungmann, C. S. Smith, B. Rieger, and S. Stallinga, "Localization microscopy at doubled precision with patterned illumination," Nat. Methods 17, 59-63 (2020).   DOI
103 D. P. Hoffman, G. Shtengel, C. S. Xu, K. R. Campbell, M. Freeman, L. Wang, D. E. Milkie, H. A. Pasolli, N. Iyer, J. A. Bogovic, D. R. Stabley, A. Shirinifard, S. Pang, D. Peale, K. Schaefer, W. Pomp, C.-L. Chang, J. Lippincott-Schwartz, T. Kirchhausen, D. J. Solecki, E. Betzig, and H. F. Hess, "Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells," Science 367, eaaz5357 (2020).   DOI
104 M. G. L. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," J. Microsc. 198, 82-87 (2000).   DOI
105 T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, "Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission," Proc. Natl. Acad. Sci. U. S. A. 97, 8206-8210 (2000).   DOI
106 F. Gottfert, T. Pleiner, J. Heine, V. Westphal, D. Gorlich, S. J. Sahl, and S. W. Hell, "Strong signal increase in STED fluorescence microscopy by imaging regions of subdiffraction extent," Proc. Natl. Acad. Sci. U. S. A. 114, 2125-2130 (2017).   DOI
107 V. V. G. K. Inavalli, M. O. Lenz, C. Butler, J. Angibaud, B. Compans, F. Levet, J. Tonnesen, O. Rossier, G. Giannone, O. Thoumine, E. Hosy, D. Choquet, J.-B. Sibarita, and U. V. Nagerl, "A super-resolution platform for correlative live single-molecule imaging and STED microscopy," Nat. Methods 16, 1263-1268 (2019).   DOI
108 P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, "Super-resolution video microscopy of live cells by structured illumination," Nat. Methods 6, 339-342 (2009).   DOI
109 R. Fiolka, L. Shao, E. H. Rego, M. W. Davidson, and M. G. L. Gustafsson, "Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination," Proc. Natl. Acad. Sci. U. S. A. 109, 5311-5315 (2012).   DOI
110 Y. Guo, D. Li, S. Zhang, Y. Yang, J.-J. Liu, X. Wang, C. Liu, D. E. Milkie, R. P. Moore, U. S. Tulu, D. P. Kiehart, J. Hu, J. Lippincott-Schwartz, E. Betzig, and D. Li, "Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales," Cell 175, 1430-1442.e17 (2018).   DOI
111 R. J. Marsh, K. Pfisterer, P. Bennett, L. M. Hirvonen, M. Gautel, G. E. Jones, and S. Cox, "Artifact-free high-density localization microscopy analysis," Nat. Methods 15, 689-692 (2018).   DOI
112 H. Wang, Y. Rivenson, Y. Jin, Z. Wei, R. Gao, H. Gunaydin, L. A. Bentolila, C. Kural, and A. Ozcan, "Deep learning enables cross-modality super-resolution in fluorescence microscopy," Nat. Methods 16, 103-110 (2019).   DOI
113 M. Filius, T. J. Cui, A. N. Ananth, M. W. Docter, J. W. Hegge, J. van der Oost, and C. Joo, "High-speed super-resolution imaging using protein-assisted DNA-PAINT," Nano Lett. 20, 2264-2270 (2020).   DOI
114 W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, "Deep learning massively accelerates super-resolution localization microscopy," Nat. Biotechnol. 36, 460-468 (2018).   DOI
115 P. Zhang, S. Liu, A. Chaurasia, D. Ma, M. J. Mlodzianoski, E. Culurciello, and F. Huang, "Analyzing complex single-molecule emission patterns with deep learning," Nat. Methods 15, 913-916 (2018).   DOI
116 T. Kim, S. Moon, and K. Xu, "Information-rich localization microscopy through machine learning," Nat. Commun. 10, 1996 (2019).   DOI
117 C. Belthangady and L. A. Royer, "Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction," Nat. Methods 16, 1215-1225 (2019).   DOI
118 M. Tokunaga, N. Imamoto, and K. Sakata-Sogawa, "Highly inclined thin illumination enables clear single-molecule imaging in cells," Nat. Methods 5, 159-161 (2008).   DOI
119 M. Bossi, J. Folling, M. Dyba, V. Westphal, and S. W. Hell, "Breaking the diffraction resolution barrier in far-field microscopy by molecular optical bistability," New J. Phys. 8, 275 (2006).   DOI
120 R. Jungmann, M. S. Avendano, J. B. Woehrstein, M. Dai, W. M. Shih, and P. Yin, "Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT," Nat. Methods 11, 313-318 (2014).   DOI
121 B. Yang, X. Chen, Y. Wang, S. Feng, V. Pessino, N. Stuurman, N. H. Cho, K. W. Cheng, S. J. Lord, L. Xu, D. Xie, R. D. Mullins, M. D. Leonetti, and B. Huang, "Epi-illumination SPIM for volumetric imaging with high spatial-temporal resolution," Nat. Methods 16, 501-504 (2019).   DOI
122 C. Sieben, N. Banterle, K. M. Douglass, P. Gonczy, and S. Manley, "Multicolor single-particle reconstruction of protein complexes," Nat. Methods 15, 777-780 (2018).   DOI
123 M. Pascucci, S. Ganesan, A. Tripathi, O. Katz, V. Emiliani, and M. Guillon, "Compressive three-dimensional super-resolution microscopy with speckle-saturated fluorescence excitation," Nat. Commun. 10, 1327 (2019).   DOI
124 Y. Zhang, L. K. Schroeder, M. D. Lessard, P. Kidd, J. Chung, Y. Song, L. Benedetti, Y. Li, J. Ries, J. B. Grimm, L. D. Lavis, P. De Camilli, J. E. Rothman, D. Baddeley, and J. Bewersdorf, "Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging," Nat. Methods 17, 225-231 (2020).   DOI
125 E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and Y. Shechtman, "DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning," Nat. Methods 17, 734-740 (2020).   DOI
126 D. Li, L. Shao, B.-C. Chen, X. Zhang, M. Zhang, B. Moses, D. E. Milkie, J. R. Beach, J. A. Hammer III, M. Pasham, T. Kirchhausen, M. A. Baird, M. W. Davidson, P. Xu, and E. Betzig, "Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics," Science 349, aab3500 (2015).   DOI