Browse > Article
http://dx.doi.org/10.3807/COPP.2022.6.6.521

Optically Managing Thermal Energy in High-power Yb-doped Fiber Lasers and Amplifiers: A Brief Review  

Yu, Nanjie (Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign)
Ballato, John (Department of Materials Science and Engineering, Clemson University)
Digonnet, Michel J.F. (Edward L. Ginzton Laboratory, Stanford University)
Dragic, Peter D. (Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign)
Publication Information
Current Optics and Photonics / v.6, no.6, 2022 , pp. 521-549 More about this Journal
Abstract
Fiber lasers have made remarkable progress over the past three decades, and they now serve far-reaching applications and have even become indispensable in many technology sectors. As there is an insatiable appetite for improved performance, whether relating to enhanced spatio-temporal stability, spectral and noise characteristics, or ever-higher power and brightness, thermal management in these systems becomes increasingly critical. Active convective cooling, such as through flowing water, while highly effective, has its own set of drawbacks and limitations. To overcome them, other synergistic approaches are being adopted that mitigate the sources of heating at their roots, including the quantum defect, concentration quenching, and impurity absorption. Here, these optical methods for thermal management are briefly reviewed and discussed. Their main philosophy is to carefully select both the lasing and pumping wavelengths to moderate, and sometimes reverse, the amount of heat that is generated inside the laser gain medium. First, the sources of heating in fiber lasers are discussed and placed in the context of modern fiber fabrication methods. Next, common methods to measure the temperature of active fibers during laser operation are outlined. Approaches to reduce the quantum defect, including tandem-pumped and short-wavelength lasers, are then reviewed. Finally, newer approaches that annihilate phonons and actually cool the fiber laser below ambient, including radiation-balanced and excitation-balanced fiber lasers, are examined. These solutions, and others yet undetermined, especially the latter, may prove to be a driving force behind a next generation of ultra-high-power and/or ultra-stable laser systems.
Keywords
Anti-stokes fluorescence cooling; Fiber lasers; Tandem-pumped lasers; Thermal management; Radiation-balanced lasers;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Kanskar, C. Bai, L. Bao, Z. Chen, C. Chiong, M. De-Franza, K. Fortier, M. Hemenway, S. Li, E. Martin, J. Small, B. Tomakian, W. Urbanek, B. Wilkins, and J. Zhang, "High brightness diodes and 600 W 62% efficient low SWaP fibercoupled package," Proc. SPIE 11262, 112620A (2020).
2 T. Konning, S. Ahlert, J.-N. Weimar, R. Steinborn-Knuth, F. Ahnepohl, H. Kissel, B. Kohler, G. Liu, and S. Lehkonen, "Wavelength stabilized fiber coupled modules at 79x nm, 88x nm, and 97x nm with up to 600W output power based on single emitters," Proc. SPIE 11668, 116680F (2021).
3 V. Gapontsev, V. Fomin, A. Ferin, and M. Abramov, "Diffraction limited ultra-high-power fiber lasers," in Lasers, Sources and Related Photonic Devices (Optica Publishing Group, 2010), paper AWA1.
4 X. Dong, X. Li, H. Xiao, X. Wang, and P. Zhou, "Efficient special S-band ytterbium fiber laser emitting at 1012 nm and its application in tandem pumping," Laser Phys. 22, 953-956 (2012).   DOI
5 H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, "High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump," Appl. Opt. 54, 8166-8169 (2015).   DOI
6 H. Yang, W. Zhao, J. Si, B. Zhao, and Y. Zhu, "126 W fiber laser at 1018 nm and its application in tandem pumped fiber amplifier," J. Opt. 18, 125801 (2016).   DOI
7 J. M. O. Daniel, N. Simakov, A. Hemming, W. A. Clarkson, and J. Haub, "Metal clad active fibres for power scaling and thermal management at kW power levels," Opt. Express 24, 18592-18606 (2016).   DOI
8 P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, "A unified materials approach to mitigating optical nonlinearities in optical fiber. II. B. The optical fiber, material additivity and the nonlinear coefficients," Int. J. Appl. Glas. Sci. 9, 307-318 (2018).   DOI
9 S. R. Bowman, S. P. O'Connor, S. Biswal, N. J. Condon, and A. Rosenberg, "Minimizing heat generation in solid-state lasers," IEEE J. Quantum Electron. 46, 1076-1085 (2010).   DOI
10 J. M. Knall, M. Engholm, T. Boilard, M. Bernier, and M. J. F. Digonnet, "Radiation-balanced silica fiber amplifier," Phys. Rev. Lett. 127, 013903 (2021).   DOI
11 H. Zellmer, A. Tunnermann, H. Welling, and V. Reichel, "Double-clad fiber laser with 30 W output power," in Optical Amplifiers and Their Applications (Optica Publishing Group, 1997), paper FAW18.
12 F. Gonthier, L. Martineau, N. Azami, M. Faucher, F. Seguin, D. Stryckman, and A. Villeneuve, "High-power All-Fiber components: the missing link for high-power fiber lasers," Proc. SPIE 5335, 266-276 (2004).
13 R. Paoletti, S. Codato, C. Coriasso, F. Gaziano, P. Gotta, A. Maina, P. De Melchiorre, G. Meneghini, G. Morello, G. Pippione, E. Riva, M. Rosso, A. Stano, P. Sanna, and M. Gattiglio, "350 W high-brightness multi-emitter semiconductor laser module emitting at 976 nm," Proc. SPIE 11668, 1166805 (2021).
14 H. Steinkemper, S. Fischer, M. Hermle, and J. C. Goldschmidt, "Stark level analysis of the spectral line shape of electronic transitions in rare earth ions embedded in host crystals," New J. Phys. 15, 053033 (2013).   DOI
15 M. Khodasevich, Y. Varaksa, G. Sinitsyn, V. Aseev, M. Demesh, and A. Yasukevich, "Determining the Stark structure of Yb3+ energy levels in Y3Al5O12 and CaF2 using principal component analysis of temperature dependences of fluorescence spectra," J. Lumin. 187, 295-297 (2017).   DOI
16 J. Ballato, T. W. Hawkins, N. Yu, and P. Dragic, "Materials for TMI mitigation," Proc. SPIE 11665, 1166520 (2021).
17 E. A. Quadrelli, "Lanthanide contraction over the 4f series follows a quadratic decay," Inorg. Chem. 41, 167-169 (2002).   DOI
18 B. G. Wybourne, Spectroscopic Properties of Rare Earths (John Wiley & Sons, USA, 1965).
19 M. A. Mel'kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, "Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3," Quantum Electron. 34, 843-848 (2004).   DOI
20 M. P. Hehlen, M. Sheik-Bahae, and R. I. Epstein, "Solid-state optical refrigeration," in Handbook on the Physics and Chemistry of Rare Earths, J.-C. G. Bunzli and V. K. Pecharsky, Eds., 1st ed. (Elsevier, 2014), Vol. 45, Chapter 265, pp. 179-260.
21 M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, "Thermal effects in doped fibers," J. Light. Technol. 16, 1013-1023 (1998).   DOI
22 P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, "A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes," IEEE J. Sel. Top. Quantum Electron. 24, 0902506 (2018).
23 H. Wu, H. Xiao, H. Zhang, W. Liu, and P. Zhou, "Preliminary theoretical analysis of high-power Yb-doped fiber amplifiers tandem-pumped by short-wavelength fiber lasers," Proc. SPIE 11781, 1178120 (2021).
24 F. Gibert, J. Pellegrino, D. Edouart, C. Cenac, L. Lombard, J. Le Gouet, T. Nuns, A. Cosentino, P. Spano, and G. Di Nepi, "2-㎛ double-pulse single-frequency Tm:fiber laser pumped Ho:YLF laser for a space-borne CO2 lidar," Appl. Opt. 57, 10370-10379 (2018).   DOI
25 K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," J. Appl. Phys. 91, 576-581 (2002).   DOI
26 M.-A. Lapointe, S. Chatigny, M. Piche, M. Cain-Skaff, and J.-N. Maran, "Thermal effects in high-power CW fiber lasers," Proc. SPIE 7195, 71951U (2009).
27 Y. Nageno, H. Takebe, and K. Morinaga, "Correlation between radiative transition probabilities of Nd3+ and composition in silicate, borate, and phosphate glasses," J. Am. Ceram. Soc. 76, 3081-3086 (1993).   DOI
28 M. Peysokhan, S. Rostami, E. Mobini, A. R. Albrecht, S. Kuhn, S. Hein, C. Hupel, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, A. S. Flores, A. Tunnermann, M. SheikBahae, and A. Mafi, "Laser cooling of ytterbium-doped silica glass by more than 6 Kelvin," in Conference on Lasers and Electro-Optics (Optica Publishing Group, 2021), paper FTu2L.6.
29 A. Langner, M. Such, G. Schotz, S. Grimm, F. Just, M. Leich, C. Muhlig, J. Kobelke, A. Schwuchow, O. Mehl, O. Strauch, R. Niedrig, B. Wedel, G. Rehmann, and V. Krause, "New developments in high power fiber lasers based on alternative materials," Proc. SPIE 7914, 79141U (2011).
30 M. M. Bubnov, A. N. Gur'yanov, K. V Zotov, L. D. Iskhakova, S. V Lavrishchev, D. S. Lipatov, M. E. Likhachev, A. A. Rybaltovsky, V. F. Khopin, M. V Yashkov, and E. M. Dianov, "Optical properties of fibres with aluminophosphosilicate glass cores," Quantum Electron. 39, 857-862 (2009).   DOI
31 S. Unger, F. Lindner, C. Aichele, M. Leich, A. Schwuchow, J. Kobelke, J. Dellith, K. Schuster, and H. Bartelt, "A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology," Laser Phys. 24, 035103 (2014).   DOI
32 T. Zhang, Y. Ding, Z. Liu, and W. Gong, "An optimization of Raman effects in tandem-pumped Yb-doped kilowatt fiber amplifiers," Proc. SPIE 9524, 95240Y (2015).
33 S. K. Kalyoncu and A. Yeniay, "High brightness 1018 nm monolithic fiber laser with power scaling to >500 W," Appl. Opt. 59, 4763-4767 (2020).   DOI
34 J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, "Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers," Opt. Express 19, 18645-18654 (2011).   DOI
35 J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express 16, 13240-13266 (2008).   DOI
36 Z. Wang, W. Yu, J. Tian, T. Qi, D. Li, Q. Xiao, P. Yan, and M. Gong, "5.1 kW tandem-pumped fiber amplifier seeded by random fiber laser with high suppression of stimulated Raman scattering," IEEE J. Quantum Electron. 57, 6800109 (2021).
37 Z. Wang, P. Yan, Q. Xiao, D. Li, and M. Gong, "Experimental research on high power tandem pumped fiber laser with homemade gain fiber," Proc. SPIE 11455, 114556V (2020).
38 R. Li, H. Xiao, J. Lenn, Z. Chen, J. Xu, J. Wu, and P. Zhou, "2240 W high-brightness 1018 nm fiber laser for tandem pump application," Laser Phys. Lett. 14, 125102 (2017).   DOI
39 M. Steinke, H. Tunnermann, V. Kuhn, T. Theeg, M. Karow, O. De Varona, P. Jahn, P. Booker, J. Neumann, P. Wesels, and D. Kracht, "Single-frequency fiber amplifiers for next-generation gravitational wave detectors," IEEE J. Sel. Top. Quantum Electron. 24, 3100613 (2018).
40 C. Li, S. Xu, C. Yang, X. Wei, and Z. Yang, "Frequency noise of high-gain phosphate fiber single-frequency laser," Laser Phys. 23, 045107 (2013).   DOI
41 D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, "Laser cooling of solids to cryogenic temperatures," Nat. Photonics 4, 161-164 (2010).   DOI
42 K. Tang, K. Dong, C. J. Nicolai, Y. Li, J. Li, S. Lou, C.-W. Qiu, D. H. Raulet, J. Yao, and J. Wu, "Millikelvin-resolved ambient thermography," Sci. Adv. 6, eabd8688 (2020).   DOI
43 S. Liu, F. Song, H. Cai, T. Li, B. Tian, Z. Wu, and J. Tian, "Effect of thermal lens on beam quality and mode matching in LD pumped Er-Yb-codoped phosphate glass microchip laser," J. Phys. D: Appl. Phys. 41, 035104 (2008).   DOI
44 Q. Shi, H. Cheng, J.-W. Lu, and Y. Sun, "Spectroscopic properties of Nd3+-doped phosphate laser glasses," Chinese J. Lumin. 26, 359-364 (2005).   DOI
45 A. A. Stolov, D. A. Simoff, and J. Li, "Thermal stability of specialty optical fibers," J. Light. Technol. 26, 3443-3451 (2008).   DOI
46 L. Huang, R. S. Dyer, R. J. Lago, A. A. Stolov, and J. Li, "Mechanical properties of polyimide coated optical fibers at elevated temperatures," Proc. SPIE 9702, 97020Y (2016).
47 T. R. Gosnell, "Laser cooling of a solid by 65 K starting from room temperature," Opt. Lett. 24, 1041-1043 (1999).   DOI
48 G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, "Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses," Phys. Rev. B 57, 7673-7678 (1998).   DOI
49 P. Dragic and J. Ballato, "A brief review of specialty optical fibers for Brillouin-scattering-based distributed sensors," Appl. Sci. 8, 1996 (2018).   DOI
50 E. Li, "Rayleigh scattering based distributed optical fiber sensing," Proc. SPIE 10464, 104641K (2017).
51 X. Bao and L. Chen, "Recent progress in distributed fiber optic sensors," Sensors 12, 8601-8639 (2012).   DOI
52 M. P. Hehlen, R. I. Epstein, and H. Inoue, "Model of laser cooling in the Yb3+-doped fluorozirconate glass ZBLAN," Phys. Rev. B 75, 144302 (2007).   DOI
53 G. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical model for rare-earth-doped fiber amplifiers and lasers," IEEE J. Quantum Electron. 30, 1817-1830 (1994).   DOI
54 J. Knall, P.-B. Vigneron, M. Engholm, P. D. Dragic, N. Yu, J. Ballato, M. Bernier, and M. J. F. Digonnet, "Laser cooling in a silica optical fiber at atmospheric pressure," Opt. Lett. 45, 1092-1095 (2020).   DOI
55 L. Huang, H. Zhang, X. Wang, and P. Zhou, "Diode-pumped 1178-nm high-power Yb-doped fiber laser operating at 125 ℃," IEEE Photonics J. 8, 1501407 (2016).
56 L. Thevenaz, Advanced Fiber Optics: Concept and Technology (EPFL press, 2011).
57 N. Yu and P. D. Dragic, "On the use of Brillouin scattering to evaluate quantum conversion efficiency in Yb-doped optical fibers," J. Light. Technol. 39, 4158-4165 (2021).   DOI
58 Z. Lou, K. Han, B. Yang, H. Zhang, X. Xi, X. Wang, X. Xu, and Z. Liu, "Realization of in situ fiber-core temperature measurement in a kilowatt-level fiber laser oscillator: Design and optimization of the method based on OFDR," J. Light. Technol. 39, 2573-2582 (2021).   DOI
59 Z. Zhou, Z. Li, N. Tang, J. Sun, K. Han, and Z. Wang, "Online temperature measurement of fiber Bragg gratings inside a fiber laser," Opt. Fiber Technol. 45, 137-140 (2018).   DOI
60 J. Y. Dai, F. Y. Li, N. Liu, C. Shen, L. Zhang, H. Li, Y. Li, S. Sun, Y. Li, J. Lv, L. Jiang, H. He, H. H. Lin, J. Wang, F. Jing, and C. Gao, "10kW-level Yb-doped aluminophosphosilicate fiber," in 14th Pacific Rim Conference on Lasers and Electro-Optics (CLEO PR 2020) (Optica Publishing Group, 2020), paper C9A_1.
61 C. Shi, X. Wang, H. Zhang, R. Su, P. Ma, P. Zhou, X. Xu, and Q. Lu, "Simulation investigation of impact factors in photodarkening-induced beam degradation in fiber amplifiers," Laser Phys. 27, 105102 (2017).   DOI
62 J. Knall, M. Engholm, J. Ballato, P. Dragic, N. Yu, and M. Digonnet, "Experimental comparison of silica fibers for laser cooling," Opt. Lett. 45, 4020-4023 (2020).   DOI
63 X. Tian, X. Zhao, M. Wang, Q. Hu, H. Li, B. Rao, H. Xiao, and Z. Wang, "Influence of Bragg reflection of chirped tilted fiber Bragg grating on Raman suppression in high-power tandem pumping fiber amplifiers," Opt. Express 28, 19508-19517 (2020).   DOI
64 M. Wang, Z. Wang, L. Liu, Q. Hu, H. Xiao, and X. Xu, "Effective suppression of stimulated Raman scattering in half 10 kW tandem pumping fiber lasers using chirped and tilted fiber Bragg gratings," Photonics Res. 7, 167-171 (2019).   DOI
65 S. Naderi, I. Dajani, J. Grosek, T. Madden, and T.-N. Dinh, "Theoretical analysis of effect of pump and signal wavelengths on modal instabilities in Yb-doped fiber amplifiers," Proc. SPIE 8964, 89641W (2014).
66 J. S. Park, T. H. Kim, Y. J. Oh, E. J. Park, J. W. Kim, and H. Jeong, "Investigation of photodarkening in tandem-pumped Yb-doped fibers," Opt. Express 28, 27316-27323 (2020).   DOI
67 J. Dai, F. Li, N. Liu, C. Shen, L. Zhang, H. Li, Y. Li, S. Sun, Y. Li, J. Lv, L. Jiang, H. He, H. Lin, J. Wang, F. Jing, and C. Gao, "Extraction of more than 10 kW from Yb-doped tandem-pumping aluminophosphosilicate fiber," Proc. SPIE 11780, 117801D (2021).
68 A. Malinowski, J. H. V. Price, and M. N. Zervas, "Overlapped pulsed pumping of tandem pumped fiber amplifiers to increase achievable pulse energy," IEEE J. Quantum Electron. 53, 1600108 (2017).
69 T. W. Hawkins, P. D. Dragic, N. Yu, A. Flores, M. Engholm, and J. Ballato, "Kilowatt power scaling of an intrinsically low Brillouin and thermo-optic Yb-doped silica fiber," J. Opt. Soc. Am. B 38, F38-F49 (2021).   DOI
70 H. Zimer, M. Kozak, A. Liem, F. Flohrer, F. Doerfel, P. Riedel, S. Linke, R. Horley, F. Ghiringhelli, S. Desmoulins, M. Zervas, J. Kirchhof, S. Unger, S. Jetschke, T. Peschel, and T. Schreiber, "Fibers and fiber-optic components for high-power fiber lasers," Proc. SPIE 7914, 791414 (2011).
71 D. F. Welch, "A brief history of high-power semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 6, 1470-1477 (2000).   DOI
72 R. K. Huang, B. Chann, L. J. Missaggia, J. P. Donnelly, C. T. Harris, G. W. Turner, A. K. Goyal, T. Y. Fan, and A. Sanchez-Rubio, "High-brightness wavelength beam combined semiconductor laser diode arrays," IEEE Photonics Technol. Lett. 19, 209-211 (2007).   DOI
73 S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, "Efficient Yb laser fibers with low photodarkening by optimization of the core composition," Opt. Express 16, 15540-15545 (2008).   DOI
74 P. D. Dragic, M. Cavillon, and J. Ballato, "Materials for optical fiber lasers: a review," Appl. Phys. Rev. 5, 041301 (2018).   DOI
75 F. Beier, M. Strecker, J. Nold, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tunnermann, "6.8 kW peak power quasi-continuous wave tandem-pumped Ytterbium amplifier at 1071 nm," Proc. SPIE 9344, 93441H (2015).
76 L. Dong, "Thermal lensing in optical fibers," Opt. Express 24, 19841-19852 (2016).   DOI
77 T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, "Temperature effects on the emission properties of Yb-doped optical fibers," Opt. Commun. 273, 256-259 (2007).   DOI
78 Y. Cheng, Q. Yang, C. Yu, M. Guo, Y. Jiao, Y. Dai, S. Wang, and L. Hu, "Temperature dependence of the spectral properties of Yb3+/P5+/Al3+ co-doped silica fiber core glasses," Opt. Mater. Express 11, 2459-2467 (2021).   DOI
79 R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, "Lifetime quenching in Yb-doped fibres," Opt. Commun. 136, 375-378 (1997).   DOI
80 C. B. Layne, W. H. Lowdermilk, and M. J. Weber, "Multiphonon relaxation of rare-earth ions in oxide glasses," Phys. Rev. B 16, 10 (1977).   DOI
81 P. C. Schultz, "Optical absorption of the transition elements in vitreous silica," J. Am. Ceram. Soc. 57, 309-313 (1974).   DOI
82 Y. Fan, B. He, J. Zhou, J. Zheng, S. Dai, C. Zhao, Y. Wei, and Q. Lou, "Efficient heat transfer in high-power fiber lasers," Chin. Opt. Lett. 10, 111401 (2012).   DOI
83 M. Ackermann, G. Rehmann, R. Lange, U. Witte, F. Safarzadeh, B. Boden, H. Weber, D. Netz, C. Perne, A. Kosters, and V. Krause, "Extraction of more than 10 kW from a single ytterbium-doped MM-fiber," Proc. SPIE 10897, 1089717 (2019).
84 A. A. Jasim, O. Podrazky, P. Peterka, M. Kamradek, I. Kasik, and P. Honzatko, "Impact of shaping optical fiber preforms based on grinding and a CO2 laser on the inner-cladding losses of shaped double-clad fibers," Opt. Express 28, 13601-13615 (2020).   DOI
85 M. Chen, A. Liu, J. Cao, Z. Huang, and J. Chen, "Demonstration of 50-W-level all-fiber oscillator operating near 980 nm with the 20-㎛ core-diameter double-cladding Yb-doped fiber," Opt. Fiber Technol. 65, 102609 (2021).   DOI
86 A. S. Kurkov, "Oscillation spectral range of Yb-doped fiber lasers," Laser Phys. Lett. 4, 93-102 (2007).   DOI
87 F. Roeser, C. Jauregui, J. Limpert, and A. Tunnermann, "94 W 980 nm high brightness Yb-doped fiber laser," Opt. Express 16, 17310-17318 (2008).   DOI
88 S. S. Aleshkina, A. E. Levchenko, O. I. Medvedkov, K. K. Bobkov, M. M. Bubnov, D. S. Lipatov, A. N. Guryanov, and M. E. Likhachev, "Photodarkening-free Yb-doped saddle-shaped fiber for high power single-mode 976-nm laser," IEEE Photonics Technol. Lett. 30, 127-130 (2018).   DOI
89 H. Li, L. Zhang, R. Sidharthan, D. Ho, X. Wu, N. Venkatram, H. Sun, T. Huang, and S. Yoo, "Pump wavelength dependence of photodarkening in Yb-doped fibers," J. Light. Technol. 35, 2535-2540 (2017).   DOI
90 B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, and V. S. Ban, "Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings," Opt. Lett. 29, 1891-1893 (2004).   DOI
91 N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, and P. Dragic, "Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber," Opt. Lett. 43, 3096-3099 (2018).   DOI
92 G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, and L. Dong, "Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm," Opt. Express 23, 17693-17700 (2015).   DOI
93 M. Cavillon, C. Kucera, T. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, "A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map," Int. J. Appl. Glas. Sci. 9, 447-470 (2018).   DOI
94 H. Song, D. Yan, W. Wu, B. Shen, X. Feng, Y. Liu, L. Li, Q. Chu, M. Li, J. Wang, and R. Tao, "SRS suppression in multi-kW fiber lasers with a multiplexed CTFBG," Opt. Express 29, 20535-20544 (2021).   DOI
95 S. D. Melgaard, A. R. Albrecht, M. P. Hehlen, and M. SheikBahae, "Solid-state optical refrigeration to sub-100 Kelvin regime," Sci. Rep. 6, 20380 (2016).   DOI
96 J. Dai, C. Shen, N. Liu, L. Zhang, H. Li, H. He, F. Li, Y. Li, J. Lv, L. Jiang, Y. Li, H. Lin, J. Wang, F. Jing, and C. Gao, "10 kW-level output power from a tandem-pumped Yb-doped aluminophosphosilicate fiber amplifier," Opt. Fiber Technol. 67, 102738 (2021).   DOI
97 P. Zhou, X. Wang, Y. Ma, H. Lu, and Z. Liu, "Review on recent progress on mid-infrared fiber lasers," Laser Phys. 22, 1744-1751 (2012).   DOI
98 B. Gouhier, S. Rota-Rodrigo, G. Guiraud, N. Traynor, and G. Santarelli, "Low-noise single-frequency 50 W fiber laser operating at 1013 nm," Laser Phys. Lett. 16, 045103 (2019).   DOI
99 F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, "Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3," Opt. Mater. 24, 103-109 (2003).   DOI
100 S. R. Bowman, "Lasers without internal heat generation," IEEE J. Quantum Electron. 35, 115-122 (1999).   DOI
101 D. J. DiGiovanni, J. B. MacChesney, and T. Y. Kometani, "Structure and properties of silica containing aluminum and phosphorus near the AlPO4 join," J. Non-Cryst. Solids 113, 58-64 (1989).   DOI
102 A. L. Allred, "Electronegativity values from thermochemical data," J. Inorg. Nucl. Chem. 17, 215-221 (1961).   DOI
103 C. Clavaguera, J.-P. Dognon, and P. Pyykko, "Calculated lanthanide contractions for molecular trihalides and fully hydrated ions: The contributions from relativity and 4f-shell hybridization," Chem. Phys. Lett. 429, 8-12 (2006).   DOI
104 S. Hufner, Optical Spectra of Transparent Rare Earth Compounds (Elsevier, 1978).
105 X. Tang, Q. Han, X. Zhao, H. Song, K. Ren, and T. Liu, "Method for estimating the Stark splitting of rare-earth ions from the measured cross-section spectra," Appl. Opt. 57, 8573-8577 (2018).   DOI
106 P. Pringsheim, "Zwei Bemerkungen uber den Unterschied von Lumineszenz- und Temperaturstrahlung," Zeitschrift fur Phys. 57, 739-746 (1929).   DOI
107 S. R. Nagel, J. B. MacChesney, and K. L. Walker, "An overview of the modified chemical vapor deposition (MCVD) process and performance," IEEE Trans. Microw. Theory Tech. 30, 305-322 (1982).   DOI
108 J. Knall, A. Arora, M. Bernier, S. Cozic, and M. J. F. Digonnet, "Demonstration of anti-Stokes cooling in Yb-doped ZBLAN fibers at atmospheric pressure," Opt. Lett. 44, 2338-2341 (2019).   DOI
109 J. Ballato and P. Dragic, "On the clustering of rare earth dopants in fiber lasers," J. Dir. Energy 6, 175-181 (2017).
110 R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, "Observation of laser-induced fluorescent cooling of a solid," Nature 377, 500-503 (1995).   DOI
111 D. V. Seletskiy, R. Epstein, and M. Sheik-Bahae, "Laser cooling in solids: advances and prospects," Rep. Prog. Phys. 79, 096401 (2016).   DOI
112 M. P. Hehlen, M. Sheik-Bahae, R. I. Epstein, S. D. Melgaard, and D. V. Seletskiy, "Materials for optical cryocoolers," J. Mater. Chem. C 1, 7471-7478 (2013).   DOI
113 S. D. Melgaard, D. V. Seletskiy, A. Di Lieto, M. Tonelli, and M. Sheik-Bahae, "Optical refrigeration to 119 K, below National Institute of Standards and Technology cryogenic temperature," Opt. Lett. 38, 1588-1590 (2013).   DOI
114 C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, "Observation of anti-Stokes fluorescence cooling in thulium-doped glass," Phys. Rev. Lett. 85, 3600-3603 (2000).   DOI
115 X. Luo, M. D. Eisaman, and T. R. Gosnell, "Laser cooling of a solid by 21 K starting from room temperature," Opt. Lett. 23, 639-641 (1998).   DOI
116 Y. Jeong, C. Jauregui, D. J. Richardson, and J. Nilsson, "In situ spatially-resolved thermal and Brillouin diagnosis of high-power ytterbium-doped fibre laser by Brillouin optical time domain analysis," Electron. Lett. 45, 153-154 (2009).   DOI
117 Y. Sun, X. Wang, M. Liao, L. Hu, M. Guzik, G. Boulon, X. Li, P.-W. Kuan, W. Gao, and T. Wang, "Compositional dependence of Stark splitting and spectroscopic properties in Yb3+-doped lead silicate glasses," J. Non. Cryst. Solids 532, 119890 (2020).   DOI
118 G. Skolianos, A. Arora, M. Bernier, and M. Digonnet, "Slow light in fiber Bragg gratings and its applications," J. Phys. D: Appl. Phys. 49, 463001 (2016).   DOI
119 G. H. Dieke and H. M. Crosswhite, "The spectra of the doubly and triply ionized rare earths," Appl. Opt. 2, 675-686 (1963).   DOI
120 J. D. Minelly, E. R. Taylor, K. P. Jedrzejewski, J. Wang, and D. N. Payne, "Laser-diode pumped neodymium-doped fibre laser with output power >1 W," in Conference on Lasers and Electro-Optics (Optica Publishing Group, 1992), paper CWE6.
121 N. Yu and P. D. Dragic, "Probing the quantum conversion efficiency in Yb-doped optical fibers with Brillouin scattering," Proc. SPIE 11702, 117020B (2021).
122 C. R. Menyuk, J. T. Young, J. Hu, A. J. Goers, D. M. Brown, and M. L. Dennis, "Accurate and efficient modeling of the transverse mode instability in high energy laser amplifiers," Opt. Express 29, 17746-17757 (2021).   DOI
123 Z. Yang, J. Meng, A. R. Albrecht, and M. Sheik-Bahae, "Radiation-balanced Yb:YAG disk laser," Opt. Express 27, 1392-1400 (2019).   DOI
124 A. Malinowski, J. H. V. Price, and M. N. Zervas, "Sub-microsecond pulsed pumping as a means of suppressing amplified spontaneous emission in tandem pumped fiber amplifiers," IEEE J. Quantum Electron. 51, 6800307 (2015).
125 S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and M. Jager, "Role of Ce in Yb/Al laser fibers: prevention of photodarkening and thermal effects," Opt. Express 24, 13009-13022 (2016).   DOI
126 M. Engholm, M. Tuggle, C. Kucera, T. Hawkins, P. Dragic, and J. Ballato, "On the origin of photodarkening resistance in Yb-doped silica fibers with high aluminum concentration," Opt. Mater. Express 11, 115-126 (2021).   DOI
127 A. V. Smith and J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Express 19, 10180-10192 (2011).   DOI
128 K. Tankala, D. P. Guertin, J. Abramczyk, and N. Jacobson "Reliability of low-index polymer coated double-clad fibers used in fiber lasers and amplifiers," Opt. Eng. 50, 111607 (2011).   DOI
129 A. Rayner, M. E. J. Friese, A. G. Truscott, N. R. Heckenberg, and H. Rubinsztein-dunlop, "Laser cooling of a solid from ambient temperature," J. Mod. Opt. 48, 103-114 (2001).   DOI
130 G. Nemova and R. Kashyap, "Optimization of the dimensions of an Yb3+:ZBLANP optical fiber sample for laser cooling of solids," Opt. Lett. 33, 2218-2220 (2008).   DOI
131 Z. Xie, W. Shi, Q. Sheng, S. Fu, Q. Fang, H. Zhang, X. Bai, G. Shi, and J. Yao, "Investigation of ASE and SRS effects on 1018nm short-wavelength Yb3+-doped fiber laser," Proc. SPIE 10083, 1008327 (2017).
132 J. M. Knall and M. J. F. Digonnet, "Design of high-power radiation-balanced silica fiber lasers with a doped core and cladding," J. Light. Technol. 39, 2497-2504 (2021).   DOI
133 N. Yu, K. V. Desai, A. E. Mironov, M. Xiong, M. Cavillon, T. Hawkins, J. Ballato, J. G. Eden, and P. D. Dragic, "Reduced quantum defect in a Yb-doped fiber laser by balanced dual-wavelength excitation," Appl. Phys. Lett. 119, 141105 (2021).   DOI
134 N. Platonov, O. Shkurikhin, V. Fomin, D. Myasnikov, R. Yagodkin, A. Ferin, A. Doronkin, I. Ulyanov, and V. Gapontsev, "High-efficient kW-level single-mode ytterbium fiber lasers in all-fiber format with diffraction-limited beam at wavelengths in 1000-1030 nm spectral range," Proc. SPIE 11260, 1126003 (2020).
135 J. Fernandez, A. J. Garcia-Adeva, and R. Balda, "Anti-stokes laser cooling in bulk erbium-doped materials," Phys. Rev. Lett. 97, 033001 (2006).   DOI
136 N. J. Condon, S. R. Bowman, S. P. O'Connor, R. S. Quimby, and C. E. Mungan, "Optical cooling in Er3+:KPb2Cl5," Opt. Express 17, 5466-5472 (2009).   DOI
137 S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, and A. Shirakawa, "Extremely low quantum defect oscillation of Ytterbium fiber laser by laser diode pumping at room temperature," in Advanced Solid-State Photonics (Optica Publishing Group, 2007), paper TuB4.
138 IPG Photonics, "High power CW fiber lasers," (IPG Photonics), https://www.ipgphotonics.com/en/products/lasers/high-power-cw-fiber-lasers (Accessed date: Sept. 1, 2022).
139 Z. Lou, B. Yang, K. Han, X. Wang, H. Zhang, X. Xi, and Z. Liu, "Real-time in-situ distributed fiber core temperature measurement in hundred-watt fiber laser oscillator pumped by 915/976 nm LD sources," Sci. Rep. 10, 9006 (2020).   DOI
140 K.-J. Lim, S. K.-W. Seah, J. Y. Ye, W. W. Lim, C.-P. Seah, Y.- B. Tan, S. Tan, H. Lim, R. Sidharthan, A. R. Prasadh, C.-J. Chang, S. Yoo, and S.-L. Chua, "High absorption large-mode area step-index fiber for tandem-pumped high-brightness high-power lasers," Photonics Res. 8, 1599-1604 (2020).   DOI
141 P. Even and D. Pureur, "High power double clad fiber lasers: a review," Proc. SPIE 4638, 1-12 (2002).
142 A. Galvanauskas, "High power fiber lasers," Opt. Photonics News 15, 42-47 (2004).   DOI
143 D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010).   DOI
144 C. Jauregui, J. Limpert, and A. Tunnermann, "High-power fibre lasers," Nat. Photonics 7, 861-867 (2013).   DOI
145 M. N. Zervas, "High power ytterbium-doped fiber lasers-Fundamentals and applications," Int. J. Mod. Phys. B 28, 1442009 (2014).   DOI
146 M. N. Zervas and C. A. Codemard, "High power fiber lasers: a review," IEEE J. Sel. Top. Quantum Electron. 20, 219-241 (2014).   DOI
147 Z. Liu, X. Jin, R. Su, P. Ma, and P. Zhou, "Development status of high power fiber lasers and their coherent beam combination," Sci. China Inf. Sci. 62, 41301 (2019).   DOI
148 H. Po, J. D. Cao, B. M. Laliberte, R. A. Minns, R. F. Robinson, B. H. Rockney, R. R. Tricca, and Y. H. Zhang, "High power neodymium-doped single transverse mode fibre laser," Electron. Lett. 29, 1500-1501 (1993).   DOI
149 A. Arora, "High-resolution temperature and acoustic pressure sensors utilizing slow-light fiber Bragg gratings," Ph.D. Thesis, Stanford University, USA (2019).
150 M. Peysokhan, E. Mobini, A. Allahverdi, B. Abaie, and A. Mafi, "Characterization of Yb-doped ZBLAN fiber as a platform for radiation-balanced lasers," Photonics Res. 8, 202-210 (2020).   DOI
151 R. Kashyap, Fiber Bragg Gratings, 2nd ed. (Academic Press, 2009).
152 A. M. Rocha, P. F. da C. Antunes, M. de F. F. Domingues, M. Facao, and P. S. de B. Andre, "Detection of fiber fuse effect using FBG sensors," IEEE Sens. J. 11, 1390-1394 (2011).   DOI
153 V. Goloborodko, S. Keren, A. Rosenthal, B. Levit, and M. Horowitz, "Measuring temperature profiles in high-power optical fiber components," Appl. Opt. 42, 2284-2288 (2003).   DOI
154 A. Arora, M. Esmaeelpour, M. Bernier, and M. J. F. Digonnet, "High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection," Opt. Lett. 43, 3337-3340 (2018).   DOI
155 W.-J. Hwang, K.-S. Shin, J.-H. Roh, D.-S. Lee, and S.-H. Choa, "Development of micro-heaters with optimized temperature compensation design for gas sensors," Sensors 11, 2580-2591 (2011).   DOI
156 J. M. Knall, M. Esmaeelpour, and M. J. F. Digonnet, "Model of anti-Stokes fluorescence cooling in a single-mode optical fiber," J. Light. Technol. 36, 4752-4760 (2018).   DOI
157 J. Knall, M. Engholm, T. Boilard, M. Bernier, P.-B. Vigneron, N. Yu, P. D. Dragic, J. Ballato, and M. J. F. Digonnet, "Radiation-balanced silica fiber laser," Optica 8, 830-833 (2021).   DOI
158 G. Nemova and R. Kashyap, "High-power fiber lasers with integrated rare-earth optical cooler," Proc. SPIE 7614, 761406 (2010).
159 N. Yu, M. Cavillon, C. Kucera, T. Hawkins, J. Ballato, and P. Dragic, "Low quantum defect fiber lasers via Yb-doped multicomponent fluorosilicate optical fiber," in Conference on Lasers and Electro-Optics (Optica Publishing Group, 2018), paper STu3K.6.
160 X. Peng, J. McLaughlin, and L. Dong, "Temperature dependence of ytterbium doped fiber amplifiers," in Optical Amplifiers and Their Applications (Optica Publishing Group, 2005), paper TuD4.
161 J. M. Knall, P.-B. Vigneron, M. Engholm, P. D. Dragic, N. Yu, J. Ballato, M. Bernier, and M. J. F. Digonnet, "Experimental observation of cooling in Yb-doped silica fibers," Proc. SPIE 11298, 112980F (2020).
162 A. J. Boyland, A. S. Webb, S. Yoo, F. H. Mountfort, M. P. Kalita, R. J. Standish, J. K. Sahu, D. J. Richardson, and D. N. Payne, "Optical fiber fabrication using novel gas-phase deposition technique," J. Light. Technol. 29, 912-915 (2011).   DOI
163 M. Saha, S. Das Chowdhury, N. K. Shekhar, A. Pal, M. Pal, C. Guha, and R. Sen, "Yb-doped pedestal silica fiber through vapor phase doping for pulsed laser applications," IEEE Photonics Technol. Lett. 28, 1022-1025 (2016).   DOI
164 V. Gapontsev, N. Moshegov, I. Berezin, A. Komissarov, P. Trubenko, D. Miftakhutdinov, I. Berishev, V. Chuyanov, O. Raisky, and A. Ovtchinnikov, "Highly-efficient high-power pumps for fiber lasers," Proc. SPIE 10086, 1008604 (2017).
165 W. Patterson, S. Bigotta, M. Sheik-Bahae, D. Parisi, M. Tonelli, and R. Epstein, "Anti-Stokes luminescence cooling of Tm3+doped BaY2F8," Opt. Express 16, 1704-1710 (2008).   DOI
166 M. Sheik-Bahae and R. I. Epstein, "Optical refrigeration," Nat. Photonics 1, 693-699 (2007).   DOI
167 R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, "Measurements of optical refrigeration in ytterbium-doped crystals," J. Appl. Phys. 90, 4815-4819 (2001).   DOI
168 J. Thiede, J. Distel, S. R. Greenfield, and R. I. Epstein, "Cooling to 208 K by optical refrigeration," Appl. Phys. Lett. 86, 154107 (2005).   DOI
169 P. Zhou, H. Xiao, J. Leng, H. Zhang, J. Xu, and J. Wu, "Recent development on high-power tandem-pumped fiber laser," Proc. SPIE 10016, 100160M (2016).
170 L. J. Mawst, H. Kim, G. Smith, W. Sun, and N. Tansu, "Strained-layer quantum well materials grown by MOCVD for diode laser application," Prog. Quantum Electron. 75, 100303 (2021).   DOI
171 M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato, "Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities," Opt. Mater. Express 8, 744-760 (2018).   DOI
172 T. Okazaki, E. H. Sekiya, and K. Saito, "P concentration dependence of local structure around Yb3+ ions and optical properties in Yb-P-doped silica glasses," Jpn. J. Appl. Phys. 58, 062001 (2019).   DOI
173 L. Zhang, T. Xue, D. He, M. Guzik, and G. Boulon, "Influence of Stark splitting levels on the lasing performance of Yb3+ in phosphate and fluorophosphate glasses," Opt. Express 23, 1505-1511 (2015).   DOI
174 S. Suzuki, H. A. McKay, X. Peng, L. Fu, and L. Dong, "Highly ytterbium-doped silica fibers with low photo-darkening," Opt. Express 17, 9924-9932 (2009).   DOI
175 A. Mafi, "Temperature distribution inside a double-cladding optical fiber laser or amplifier," J. Opt. Soc. Am. B 37, 1821-1828 (2020).   DOI
176 Y. Fan, B. He, J. Zhou, J. Zheng, H. Liu, Y. Wei, J. Dong, and Q. Lou, "Thermal effects in kilowatt all-fiber MOPA," Opt. Express 19, 15162-15172 (2011).   DOI
177 S. S. Sane, S. Bennetts, J. E. Debs, C. C. N. Kuhn, G. D. McDonald, P. A. Altin, J. D. Close, and N. P. Robins, "11 W narrow linewidth laser source at 780 nm for laser cooling and manipulation of Rubidium," Opt. Express 20, 8915-8919 (2012).   DOI
178 S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A. Norwood, and N. Peyghambarian, "Review of recent progress on single-frequency fiber lasers," J. Opt. Soc. Am. B 34, A49-A62 (2017).   DOI
179 S. Xu, Z. Yang, W. Zhang, X. Wei, Q. Qian, D. Chen, Q. Zhang, S. Shen, M. Peng, and J. Qiu, "400 mW ultrashort cavity low-noise single-frequency Yb3+-doped phosphate fiber laser," Opt. Lett. 36, 3708-3710 (2011).   DOI
180 Changgeng Ye, L. Petit, J. J. Koponen, I-Ning Hu, and A. Galvanauskas, "Short-term and long-term stability in ytterbium-doped high-power fiber lasers and amplifiers," IEEE J. Sel. Top. Quantum Electron. 20, 188-199 (2014).   DOI
181 J. Koponen, M. Laurila, M. Soderlund, J. J. Montiel i Ponsoda, and A. Iho, "Benchmarking and measuring photodarkening in Yb doped fibers," Proc. SPIE 7195, 71950R (2009).
182 C. Jauregui, C. Stihler, and J. Limpert, "Transverse mode instability," Adv. Opt. Photonics 12, 429-484 (2020).   DOI
183 J. M. F. van Dijk and M. F. H. Schuurmans, "On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4 f-4 f transitions in rare-earth ions," J. Chem. Phys. 78, 5317-5323 (1983).   DOI
184 P. Barua, E. H. Sekiya, K. Saito, and A. J. Ikushima, "Influences of Yb3+ ion concentration on the spectroscopic properties of silica glass," J. Non-Cryst. Solids 354, 4760-4764 (2008).   DOI
185 R. Reisfeld and C. K. Jorgensen, "Excited state phenomena in vitreous materials," in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidne and J. and L. Eyring, Eds. (Elsevier, Amsterdam, The Netherlands, 1987), Vol. 9, Chapter 58, pp. 1-90.
186 D. Stachowiak, "High-power passive fiber components for all-fiber lasers and amplifiers application-design and fabrication," Photonics 5, 38 (2018).   DOI
187 B. Zintzen, T. Langer, J. Geiger, D. Hoffmann, and P. Loosen, "Optimization of the heat transfer in multi-kW-fiber-lasers," Proc. SPIE 6873, 687319 (2008).
188 P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, and Z. Liu, "High-power fiber lasers based on tandem pumping," J. Opt. Soc. Am. B 34, A29-A36 (2017).   DOI
189 E. S. de L. Filho, G. Nemova, S. Loranger, and R. Kashyap, "Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure," Opt. Express 21, 24711-24720 (2013).   DOI
190 S. R. Bowman, S. O'Connor, S. Biswal, and N. J. Condon, "Demonstration and analysis of a high power radiation balanced laser," in CLEO:2011 - Laser Applications to Photonic Applications (Optica Publishing Group, 2011), paper CMH4.
191 G. Nemova, "Progress Toward Laser Cooling of Thulium-Doped Fibers," in Laser Cooling: Fundamental Properties and Applications, 1st ed. (Pan Stanford Pub. Pte. Ltd., Singapore, 2017), Chapter. 3.
192 J. V. Guiheen, C. D. Haines, G. H. Sigel, R. I. Epstein, J. Thiede, and W. M. Patterson, " Yb3+ and Tm3+ -doped fluoroaluminate glasses for anti-Stokes cooling," Phys. Chem. Glas.: Eur. J. Glas. Sci. Technol. Part B 47, 167-176 (2006).
193 S. Rostami, A. R. Albercht, M. R. Ghasemkhani, S. D. Melgaard, A. Gragossian, M. Tonelli, and M. Sheik-Bahae, "Optical refrigeration of Tm:YLF and Ho:YLF crystals," Proc. SPIE 9765, 97650P (2016).
194 A. Mendioroz, J. Fernandez, M. Voda, M. Al-Saleh, R. Balda, and A. J. Garcia-Adeva, "Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal," Opt. Lett. 27, 1525-1527 (2002).   DOI
195 A. Rayner, M. Hirsch, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Distributed laser refrigeration," Appl. Opt. 40, 5423-5429 (2001).   DOI