Browse > Article
http://dx.doi.org/10.3807/COPP.2022.6.5.497

Effective Coupling of a Topological Corner-state Nanocavity to Various Plasmon Nanoantennas  

Ma, Na (College of Science, China University of Petroleum (East China))
Jiang, Ping (College of Science, China University of Petroleum (East China))
Zeng, You Tao (College of Science, China University of Petroleum (East China))
Qiao, Xiao Zhen (College of Science, China University of Petroleum (East China))
Xu, Xian Feng (College of Science, China University of Petroleum (East China))
Publication Information
Current Optics and Photonics / v.6, no.5, 2022 , pp. 497-505 More about this Journal
Abstract
Topological photonic nanocavities are considered to possess outstanding optical performance, and provide new platforms for realizing strong interaction between light and matter, due to their robustness to impurities and defects. Here hybrid plasmonic topological photonic nanocavities are proposed, by embedding various plasmon nanoantennas such as gold nanospheres, cylinders, and rectangles in a topological photonic crystal corner-state nanocavity. The maximum quality factor Q and minimum effective mode volume Veff of these hybrid nanocavities can reach the order of 104 and 10-4 (𝜆/n)3 respectively, and the high figures of merit Q/Veff for all of these hybrid nanocavites are stable and on the order of 105 (𝜆/n)-3. The relative positions of the plasmon nanoantennas will influence the coupling strength between the plasmon structures and the topological nanocavity. The hybrid nanocavity with gold nanospheres possesses much higher Q, but relatively large Veff. The presence of a gold rectangular structure can confine more electromagnetic energy within a smaller space, since its Veff is smallest, although Q is lowest among these structures. This work provides an outstanding platform for cavity quantum electrodynamics and has a wide range of applications in topological quantum light sources, such as single-photon sources and nanolasers.
Keywords
Cavity quantum electrodynamics; Plasmon nanoantennas; Purcell enhancement; Topological photonic nanocavity; Topological protection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. L. O'brien, A. Furusawa, and J. Vuckovic, "Photonic quantum technologies," Nat. Photonics 3, 687-695 (2009).   DOI
2 A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, "Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond," Phys. Rev. Lett. 109, 033604 (2012).   DOI
3 T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).   DOI
4 Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).   DOI
5 H. Zhang, Y.-C. Liu, C. Wang, N. Zhang, and C. Lu, "Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V," Opt. Lett. 45, 4794-4797 (2020).   DOI
6 X. Xie, W. Zhang, X. He, S. Wu, J. Dang, K. Peng, F. Song, L. Yang, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, and X. Xu, "Cavity quantum electrodynamics with second-order topological corner state," Laser Photonics Rev. 14, 1900425 (2020).   DOI
7 H. Zhang, Y. Zheng, Z.-M. Yu, X. Hu, and C. Lu, "Topological hybrid nanocavity for coupling phase transition," J. Opt. 23, 124002 (2021).   DOI
8 Y.-H. Deng, Z.-J. Yang, and J. He, "Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement," Opt. Express 26, 31116-31128 (2018).   DOI
9 M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, "Photonic Floquet topological insulators," Nature 496, 196-200 (2013).   DOI
10 A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, "Photonic topological insulators," Nat. Mater. 12, 233-239 (2013).   DOI
11 P. St-Jean, V. Goblot, E. Galopin, A. Lemaitre, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, "Lasing in topological edge states of a one-dimensional lattice," Nat. Photonics 11, 651-656 (2017).   DOI
12 Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, "Topological photonic crystal nanocavity laser," Commun. Phys. 1, 86 (2018).   DOI
13 Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, and S. Iwamoto, "Photonic crystal nanocavity based on a topological corner state," Optica. 6, 786-789 (2019).   DOI
14 Z. Qian, Z. Li, H. Hao, L. Shan, Q. Gong, and Y. Gu, "Topologically enabled ultralarge purcell enhancement robust to photon scattering," arXiv:1910.14222 (2019).
15 X. Gao, L. Yang, H. Lin, L. Zhang, J. Li, F. Bo, Z. Wang, and L. Lu, "Dirac-vortex topological cavities," Nat. Nanotechnol. 15, 1012-1018 (2020).   DOI
16 Z.-K. Shao, H.-Z. Chen, S. Wang, X.-R. Mao, Z.-Q. Yang, S.-L. Wang, X.-X. Wang, X. Hu, and R.-M. Ma, "A high-performance topological bulk laser based on band-inversion-induced reflection," Nat. Nanotechnol. 15, 67-72 (2020).   DOI
17 W. Zhang, X. Xie, H. Hao, J. Dang, S. Xiao, S. Shi, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, and X. Xu, "Low-threshold topological nanolasers based on the second-order corner state," Light Sci. Appl. 9, 109 (2020).   DOI
18 S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007).   DOI
19 P. Lodahl, S. Mahmoodian, and S. Stobbe, "Interfacing single photons and single quantum dots with photonic nanostructures," Rev. Mod. Phys. 87, 347 (2015).   DOI
20 F. Liu, A. J. Brash, J. O'Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, "High Purcell factor generation of indistinguishable on-chip single photons," Nat. Nanotechnol. 13, 835-840 (2018).   DOI
21 K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system," Nature 450, 862-865 (2007).   DOI
22 K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).   DOI
23 W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006).   DOI
24 D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, "Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity," Nano Lett. 10, 3922-3926 (2010).   DOI