Effective Coupling of a Topological Corner-state Nanocavity to Various Plasmon Nanoantennas |
Ma, Na
(College of Science, China University of Petroleum (East China))
Jiang, Ping (College of Science, China University of Petroleum (East China)) Zeng, You Tao (College of Science, China University of Petroleum (East China)) Qiao, Xiao Zhen (College of Science, China University of Petroleum (East China)) Xu, Xian Feng (College of Science, China University of Petroleum (East China)) |
1 | J. L. O'brien, A. Furusawa, and J. Vuckovic, "Photonic quantum technologies," Nat. Photonics 3, 687-695 (2009). DOI |
2 | A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, "Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond," Phys. Rev. Lett. 109, 033604 (2012). DOI |
3 | T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). DOI |
4 | Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). DOI |
5 | H. Zhang, Y.-C. Liu, C. Wang, N. Zhang, and C. Lu, "Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V," Opt. Lett. 45, 4794-4797 (2020). DOI |
6 | X. Xie, W. Zhang, X. He, S. Wu, J. Dang, K. Peng, F. Song, L. Yang, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, and X. Xu, "Cavity quantum electrodynamics with second-order topological corner state," Laser Photonics Rev. 14, 1900425 (2020). DOI |
7 | H. Zhang, Y. Zheng, Z.-M. Yu, X. Hu, and C. Lu, "Topological hybrid nanocavity for coupling phase transition," J. Opt. 23, 124002 (2021). DOI |
8 | Y.-H. Deng, Z.-J. Yang, and J. He, "Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement," Opt. Express 26, 31116-31128 (2018). DOI |
9 | M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, "Photonic Floquet topological insulators," Nature 496, 196-200 (2013). DOI |
10 | A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, "Photonic topological insulators," Nat. Mater. 12, 233-239 (2013). DOI |
11 | P. St-Jean, V. Goblot, E. Galopin, A. Lemaitre, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, "Lasing in topological edge states of a one-dimensional lattice," Nat. Photonics 11, 651-656 (2017). DOI |
12 | Y. Ota, R. Katsumi, K. Watanabe, S. Iwamoto, and Y. Arakawa, "Topological photonic crystal nanocavity laser," Commun. Phys. 1, 86 (2018). DOI |
13 | Y. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, and S. Iwamoto, "Photonic crystal nanocavity based on a topological corner state," Optica. 6, 786-789 (2019). DOI |
14 | Z. Qian, Z. Li, H. Hao, L. Shan, Q. Gong, and Y. Gu, "Topologically enabled ultralarge purcell enhancement robust to photon scattering," arXiv:1910.14222 (2019). |
15 | X. Gao, L. Yang, H. Lin, L. Zhang, J. Li, F. Bo, Z. Wang, and L. Lu, "Dirac-vortex topological cavities," Nat. Nanotechnol. 15, 1012-1018 (2020). DOI |
16 | Z.-K. Shao, H.-Z. Chen, S. Wang, X.-R. Mao, Z.-Q. Yang, S.-L. Wang, X.-X. Wang, X. Hu, and R.-M. Ma, "A high-performance topological bulk laser based on band-inversion-induced reflection," Nat. Nanotechnol. 15, 67-72 (2020). DOI |
17 | W. Zhang, X. Xie, H. Hao, J. Dang, S. Xiao, S. Shi, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, and X. Xu, "Low-threshold topological nanolasers based on the second-order corner state," Light Sci. Appl. 9, 109 (2020). DOI |
18 | S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, "High-frequency single-photon source with polarization control," Nat. Photonics 1, 704-708 (2007). DOI |
19 | P. Lodahl, S. Mahmoodian, and S. Stobbe, "Interfacing single photons and single quantum dots with photonic nanostructures," Rev. Mod. Phys. 87, 347 (2015). DOI |
20 | F. Liu, A. J. Brash, J. O'Hara, L. M. P. P. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, I. E. Itskevich, L. R. Wilson, M. S. Skolnick, and A. M. Fox, "High Purcell factor generation of indistinguishable on-chip single photons," Nat. Nanotechnol. 13, 835-840 (2018). DOI |
21 | K. Srinivasan and O. Painter, "Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system," Nature 450, 862-865 (2007). DOI |
22 | K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). DOI |
23 | W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, and T.-M. Hsu, "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities," Phys. Rev. Lett. 96, 117401 (2006). DOI |
24 | D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, "Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity," Nano Lett. 10, 3922-3926 (2010). DOI |