Browse > Article
http://dx.doi.org/10.3807/COPP.2022.6.4.400

Spiking Suppression of Quasi-continuous-wave Pulse Nd:YAG Laser Based on Bias Pumping  

Chen, Yazheng (Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University)
Wang, Fuyong (School of Information and Electrical Engineering, Hebei University of Engineering)
Publication Information
Current Optics and Photonics / v.6, no.4, 2022 , pp. 400-406 More about this Journal
Abstract
We numerically demonstrate that the inherent spiking behavior in the quasi-continuous-wave (QCW) operation of an Nd:YAG laser can be suppressed by adopting bias pumping. After spiking suppression, the output QCW pulses from a bias-pumped Nd:YAG laser are very stable, and they can maintain nearly the same temporal shape as that of pump pulse under different pump repetition rates and peak powers. Our study implies that bias pumping is an alternative method of spiking suppression in solid-state lasers, and the application areas of an Nd:YAG laser may be extended by bias pumping.
Keywords
Bias pumping; Laser; Quasi-continuous-wave laser; Solid-state laser;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Sheikhi, F. M. Ghaini, M. J. Torkamany, and J. Sabbaghzadeh, "Characterisation of solidification cracking in pulsed Nd:YAG laser welding of 2024 aluminium alloy," Sci. Technol. Weld. Join. 14, 161-165 (2009).   DOI
2 J. C. Bienfang, C. A. Denman, B. W. Grime, P. D. Hillman, G. T. Moore, and J. M. Telle, "20 W of continuous-wave sodium D2 resonance radiation from sum-frequency generation with injection-locked lasers," Opt. Lett. 28, 2219-2221 (2003).   DOI
3 S. H. Moon, H. Hur, Y. J. Oh, K. H. Choi, J. E. Kim, J. Y. Ko, and Y. S. Ro, "Treatment of onychomycosis with a 1,064-nm long-pulsed Nd:YAG laser," J. Cosmet. Laser Ther. 16, 165-170 (2014).   DOI
4 E. H. Elmorsy, N. A. A. Khadr, A. A. A. Taha, and D. M. A. Aziz, "Long-pulsed Nd:YAG (1,064 nm) laser versus Q-switched Nd:YAG (1,064 nm) laser for treatment of onychomycosis," Lasers Surg. Med. 52, 621-626 (2020).   DOI
5 J.-K. Zheng, Y. Bo, S.-Y. Xie, J.-W. Zuo, P.-Y. Wang, Y.-D. Guo, B.-L. Liu, Q.-J. Peng, D.-F. Cui, W.-Q. Lei, and Z.-Y. Xu, "High power quasi-continuous-wave diode-end-pumped Nd:YAG slab amplifier at 1319 nm," Chin. Phys. Lett. 30, 074202 (2013).   DOI
6 R. Lera, F. Valle-Brozas, S. Torres-Peiro, A. R. dela Cruz, M. Galan, P. Bellido, M. Seimetz, J. M. Benlloch, and L. Roso, "Simulations of the gain profile and performance of a diode side-pumped QCW Nd:YAG laser," Appl. Opt. 55, 9573-9576 (2016).   DOI
7 J. Yi, B. Tu, X. An, X. Ruan, J. Wu, H. Su, J. Shang, Y. Yu, Y. Liao, H. Cao, L. Cui, Q. Gao, and K. Zhang, "9 kilowatt-level direct-liquid-cooled Nd:YAG multi-module QCW laser," Opt. Express 26, 13915-13926 (2018).   DOI
8 J. S. Kim, T. Watanabe, and Y. Yoshida, "Ultrasonic vibration aided laser welding of al alloys: improvement of laser welding quality," J. Laser Appl. 7, 38-46 (1995).   DOI
9 T. H. Jeys, "Suppression of laser spiking by intracavity second harmonic generation," Appl. Opt. 30, 1011-1013 (1991).   DOI
10 Y. Guo, Q. Peng, Y. Bo, Z. Chen, Y. Li, L. Zhang, C. Shao, L. Yuan, B. Wang, J. Xu, J. Xu, H. Gao, Y. Xu, B. Lai, C. Su, S. Ma, and T. Cheng, "24.6 kw near diffraction limit quasi-continuous-wave Nd:YAG slab laser based on a stable-unstable hybrid cavity," Opt. Lett. 45, 1136-1139 (2020).   DOI
11 F. Wang, "Stable pulse generation in a bias-pumped gain-switched fiber laser," J. Opt. Soc. Am. B 35, 231-236 (2018).   DOI
12 F. Wang, "A novel pulsed fiber laser: further study on the bias-pumped gain-switched fiber laser," Laser Phys. Lett. 15, 085105 (2018).   DOI
13 F. Wang, Z. Qin, J. Luo, X. Zhou, and B. Li, "Duration-controllable mid-infrared pulse from bias-pumped Er:ZBLAN fiber laser," Laser Phys. 32, 015102 (2022).   DOI
14 C. Y. Li, Y. Bo, B. S. Wang, C. Y. Tian, Q. J. Peng, D. F. Cui, Z. Y. Xu, W. B. Liu, X. Q. Feng, and Y. B. Pan, "A kilowatt level diode-side-pumped QCW Nd:YAG ceramic laser," Opt. Commun. 283, 5145-5148 (2010).   DOI
15 W. Koechner, Solid State Laser Engineering, 6th ed. (Springer, 2006), pp. 15-37.
16 F. Wang, "Pulsing mechanism based on power adiabatic evolution of pump in Tm-doped fiber laser," Laser Phys. 30, 015102 (2020).   DOI
17 O. Svelto and D. C. Hanna, Principles of Lasers, 5th ed. (Springer, 2010), pp. 319-338.
18 R. P. Johnson, "Spike suppression and longitudinal mode selection in a 1.319 ㎛ Nd:YAG laser by high-efficiency intracavity frequency doubling," Opt. Laser Technol. 40, 1078-1081 (2008).   DOI
19 P. S. Mohanty, A. Kar, and J. Mazumder, "A modeling study on the influence of pulse shaping on keyhole laser welding," J. Laser Appl. 8, 291-297 (1996).   DOI
20 Y. Lu, G. Fan, H. Ren, L. Zhang, X. Xu, W. Zhang, and M. Wan, "High-average-power narrow-line-width sum frequency generation 589 nm laser," Proc. SPIE 9650, 965008 (2015).
21 C. Guo, Q. Bian, C. Xu, J. Zuo, Y. Bo, Z. Wang, Y. Shen, N. Zong, H. Gao, Y. Liu, D. Cui, Q. Peng, and Z. Xu, "High-power high beam quality narrow-linewidth quasi-continuous wave microsecond pulse 1064-nm Nd:YAG amplifier," IEEE Photonics J. 8, 1504908 (2016).
22 Q. Bian, J.-W. Zuo, C. Guo, C. Xu, Y. Shen, N. Zong, Y. Bo, Q.-J. Peng, H.-B. Chen, D.-F. Cui, and Z.-Y. Xu, "Spiking suppression of high power QCW pulse 1319 nm Nd:YAG laser with different intracavity doublers," Laser Phys. 26, 095005 (2016).   DOI
23 Q. Bian, Y. Bo, J.-W. Zuo, C. Guo, C. Xu, W. Tu, Y. Shen, N. Zong, L. Yuan, H.-W. Gao, Q.-J. Peng, H.-B. Chen, L. Feng, K. Jin, K. Wei, D.-F. Cui, S.-J. Xue, Y. -D. Zhang, and Z.-Y. Xu, "High-power QCW microsecond-pulse solid-state sodium beacon laser with spiking suppression and D2b re-pumping," Opt. Lett. 41, 1732-1735 (2016).   DOI