Browse > Article
http://dx.doi.org/10.3807/COPP.2022.6.3.323

Heterogeneously Integrated Thin-film Lithium Niobate Electro-optic Modulator Based on Slot Structure  

Li, Xiaowei (Department of Electronic Engineering, School of IoT Engineering, Jiangnan University)
Xu, Yin (Department of Electronic Engineering, School of IoT Engineering, Jiangnan University)
Huang, Dongmei (Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University)
Li, Feng (The Hong Kong Polytechnic University Shenzhen Research Institute)
Zhang, Bo (Department of Electronic Engineering, School of IoT Engineering, Jiangnan University)
Dong, Yue (Department of Electronic Engineering, School of IoT Engineering, Jiangnan University)
Ni, Yi (Department of Electronic Engineering, School of IoT Engineering, Jiangnan University)
Publication Information
Current Optics and Photonics / v.6, no.3, 2022 , pp. 323-331 More about this Journal
Abstract
Electro-optic modulator (EOM) takes a vital role in connecting the electric and optical fields. Here, we present a heterogeneously integrated EOM based on the lithium niobate-on-insulator (LNOI) platform. The key modulation waveguide structure is a field-enhanced slot waveguide formed by embedding silicon nanowires in a thin-film lithium niobate (LN), which is different from the previously reported LN ridge or etchless LN waveguides. Based on such slot structure, optical mode field area is reduced and enhanced electric field in the slot region can interact well with LN material with high Electro-optic (EO) coefficient. Therefore, the improvements in both aspects have positive effects on enhancing the modulation performance. From results, the corresponding EOM by adding such modulation waveguide structure achieves better performance, where the key half-wave-voltage-length product (V𝜋L) and 3 dB EO bandwidth are 1.78 V·cm and 40 GHz under the electrode gap width of only 6 ㎛, respectively. Moreover, Lower V𝜋L can also be achieved. With these characteristics, such field-enhanced waveguide structure could further promote the development of LNOI-based EOM.
Keywords
Electro-optic modulator; Photonic integrated components; Slot structure; Thin-film lithium niobate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Zhu, L. Shao, M. Yu, R. Cheng, B. Desiatov, C. J. Xin, Y. Hu, J. Holzgrafe, S. Ghosh, A. Shams-Ansari, E. Puma, N. Sinclair, C. Reimer, M. Zhang, and M. Loncar, "Integrated photonics on thin-film lithium niobate," Adv. Opt. Photonics 13, 242-352 (2021).   DOI
2 D. Sun, Y. Zhang, D. Wang, W. Song, X. Liu, J. Pang, D. Geng, Y. Sang, and H. Liu, "Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications," Light Sci. Appl. 9, 197 (2020).   DOI
3 E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, "A review of lithium niobate modulators for fiber-optic communications systems," IEEE J. Sel. Top. Quantum Electron. 6, 69-82 (2000).   DOI
4 Z. Zhou, R. Chen, X. Li, and T. Li, "Development trends in silicon photonics for data centers," Opt. Fiber Technol. 44, 13-23 (2018).   DOI
5 A. Honardoost, F. A. Juneghani, R. Safian, and S. Fathpour, "Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators," Opt. Express 27, 6495-6501 (2019).   DOI
6 S. Koeber, R. Palmer, M. Lauermann, W. Heni, D. L. Elder, D. Korn, M. Woessner, L. Alloatti, S. Koenig, P. C. Schindler, H. Yu, W. Bogaerts, L. R. Dalton, W. Freude, J. Leuthold, and C. Koos, "Femtojoule electro-optic modulation using a silicon-organic hybrid device," Light Sci. Appl. 4, e255 (2015).   DOI
7 G. Sinatkas, T. Christopoulos, O. Tsilipakos, and E. E. Kriezis, "Electro-optic modulation in integrated photonics," J. Appl. Phys. 130, 010901 (2021).   DOI
8 H. Luo, Z. Chen, H. Li, L. Chen, Y. Han, Z. Lin, S. Yu, and X. Cai, "High-performance polarization splitter-rotator based on lithium niobate-on-insulator platform," IEEE Photonics Technol. Lett. 33, 1423-1426 (2021).   DOI
9 C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Loncar, "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature 562, 101-104 (2018).   DOI
10 R. Safian, M. Teng, L. Zhuang, and S. Chakravarty, "Foundry-compatible thin film lithium niobate modulator with RF electrodes buried inside the silicon oxide layer of the SOI wafer," Opt. Express 28, 25843-25857 (2020).   DOI
11 L. Cai, Y. Kang, and H. Hu, "Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film," Opt. Express 24, 4640-4647 (2016).   DOI
12 M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Loncar, "Monolithic ultra-high-Q lithium niobate microring resonator," Optica 4, 1536-1537 (2017).   DOI
13 K.-H. Luo, S. Brauner, C. Eigner, P. R. Sharapova, R. Ricken, T. Meier, H. Herrmann, and C. Silberhorn, "Nonlinear integrated quantum electro-optic circuits," Sci. Adv. 5, eaat1451 (2019).   DOI
14 H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, "Recent advances in silicon-based passive and active optical interconnects," Opt. Express 23, 2487-2511 (2015).   DOI
15 Y. Su, Y. Zhang, C. Qiu, X. Guo, and L. Sun, "Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications," Adv. Mater. Technol. 5, 1901153 (2020).   DOI
16 P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, "A fully photonicsbased coherent radar system," Nature 507, 341-345 (2014).   DOI
17 Y. Ogiso, J. Ozaki, Y. Ueda, N. Kashio, N. Kikuchi, E. Yamada, H. Tanobe, S. Kanazawa, H. Yamazaki, Y. Ohiso, T. Fujii, and M. Kohtoku, "Over 67 GHz bandwidth and 1.5 V Vπ InP-based optical IQ modulator with n-i-p-n heterostructure," J. Light. Technol. 35, 1450-1455 (2017).   DOI
18 J. Lin, F. Bo, Y. Cheng, and J. Xu, "Advances in on-chip photonic devices based on lithium niobate on insulator," Photonics Res. 8, 1910-1936 (2020).   DOI
19 M. Zhang, C. Wang, P. Kharel, D. Zhu, and M. Loncar, "Integrated lithium niobate electro-optic modulators: when performance meets scalability," Optica 8, 652-667 (2021).   DOI
20 S. Sun, M. He, M. Xu, S. Gao, S. Yu, and X. Cai, "Hybrid silicon and lithium niobate modulator," IEEE J. Sel. Top. Quantum Electron. 27, 3300112 (2021).
21 C. Wang, M. Zhang, B. Stern, M. Lipson, and M. Loncar, "Nanophotonic lithium niobate electro-optic modulators," Opt. Express 26, 1547-1555 (2018).   DOI
22 Y. Jiao, J. Tol, V. Pogoretskii, J. Engelen, A. A. Kashi, S. Reniers, Y. Wang, X. Zhao, W. Yao, T. Liu, F. Pagliano, A. Fiore, X. Zhang, Z. Cao, R. R. Kumar, H. K. Tsang, R. Veldhoven, T. Vries, E. Geluk, J. Bolk, H. Ambrosius, M. Smit, and K. Williams, "Indium phosphide membrane nanophotonic integrated circuits on silicon," Phys. Status Solidi A 217, 1900606 (2020).   DOI
23 G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, "Silicon optical modulators," Nat. Photonics 4, 518-526 (2010).   DOI
24 J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, "High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation," Opt. Express 23, 23072-23078 (2015).   DOI
25 Y. Jia, L. Wang, and F. Chen, "Ion-cut lithium niobate on insulator technology: recent advances and perspectives," Appl. Phys. Rev. 8, 011307 (2021).   DOI
26 A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides," Nature 457, 71-75 (2009).   DOI
27 Ansys Ltd., "Lumerical FDTD Solution," (Ansys), https://www.lumerical.com/products/fdtd (Accessed: Oct. 20, 2021).
28 H. Miura, F. Qiu, A. M. Spring, T. Kashino, T. Kikuchi, M. Ozawa, H. Nawata, K. Odoi, and S. Yokoyama, "High thermal stability 40 GHz electro-optic polymer modulators," Opt. Express 25, 28643-28649 (2018).   DOI
29 M. Jeon, S. Yoshiba, and K. Kamisako, "Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique," Curr. Appl. Phys. 10, S237-S240 (2010).   DOI
30 A. Rao, A. Patil, P. Rabiei, A. Honardoost, R. DeSalvo, A. Paolella, and S. Fathpour, "High-performance and linear thinfilm lithium niobate Mach-Zehnder modulators on silicon up to 50GHz," Opt. Lett. 41, 5700-5703 (2016).   DOI
31 N. Boynton, H. Cai, M. Gehl, S. Arterburn, C. Dallo, A. Pomerene, A. Starbuck, D. Hood, D. C. Trotter, T. Friedmann, C. T. DeRose, and A. Lentine, "A heterogeneously integrated silicon photonic/lithium niobate travelling wave electro-optic modulator," Opt. Express 28, 1868-1884 (2020).   DOI
32 M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, "High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond," Nat. Photonics 13, 359-364 (2019).   DOI
33 P. O. Weigel, J. Zhao, K. Fang, H. Al-Rubaye, D. Trotter, D. Hood, J. Mudrick, C. Dallo, A. T. Pomerene, A. L. Starbuck, C. T. DeRose, A. L. Lentine, G. Rebeiz, and S. Mookherjea, "Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth," Opt. Express 26, 23728-23739 (2018).   DOI
34 Z. Chen, J. Yang, W.-H. Wong, E. Y.-B. Pun, and C. Wang, "Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform," Photoncis Res. 9, 2319-2324 (2021).   DOI
35 COMSOL Inc., "COMSOL multiphysics simulation software," (COMSOL), https://www.comsol.com/comsol-multiphysics (Accessed: Oct. 12, 2021).
36 M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, "Silicon intensity Mach-Zehnder modulator for single lane 100Gb/s applications," Photonics Res. 6, 109-116 (2018).   DOI
37 M. Bazzan and C. Sada, "Optical waveguide in lithium niobate: recent developments and applications," Appl. Phys. Rev. 2, 040603 (2015).   DOI
38 Y. Qi and Y. Li, "Integrated lithium niobate photonics," Nanophotonics 9, 1287-1320 (2020).   DOI
39 P. O. Weigel, F. Valdez, J. Zhao, H. Li, and S. Mookherjea, "Design of high-bandwidth, low-voltage and low-loss hybrid lithium niobate electro-optic modulators," J. Phys. Photonics 3, 012001 (2021).   DOI
40 J. Wang, P. Chen, D. Dai, and L. Liu, "Polarization coupling of X-cut thin film lithium niobate based waveguide," IEEE Photonics J. 12, 2200310 (2020).