Browse > Article
http://dx.doi.org/10.3807/COPP.2022.6.2.129

Highly Birefringent Slotted-porous-core Photonic Crystal Fiber with Elliptical-hole Cladding for Terahertz Applications  

Lee, Yong Soo (Department of Physics, Yonsei University)
Kim, Soeun (Integrated Optics Laboratory, Advanced Photonic Research Institute, Gwangju Institute of Science and Technology)
Oh, Kyunghwan (Department of Physics, Yonsei University)
Publication Information
Current Optics and Photonics / v.6, no.2, 2022 , pp. 129-136 More about this Journal
Abstract
We propose a photonic crystal fiber (PCF) with a slotted porous core and elliptical-hole cladding, for high birefringence in the terahertz regime. Asymmetry in the guided mode is obtained mainly by using arrays of elliptical air holes in the TOPAS® polymer cladding. We investigate the tradeoff between several structural parameters and find optimized values that can have a high birefringence while satisfying the single-mode condition. The optical properties in the terahertz regime are thoroughly analyzed in numerical simulations, using a full-vector finite-element method with the perfectly-matched-layer condition. In an optimal design, the proposed photonic crystal fiber shows a high birefringence of 8.80 × 10-2 and an effective material loss of 0.07 cm-1 at a frequency of 1 THz, satisfying the single-mode-guidance condition at the same time. The proposed PCF would be useful for various polarization-management applications in the terahertz range.
Keywords
High birefringence; Photonic crystal fiber; Terahertz;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.-H. Lee, S. Shin, Y. Roh, S. J. Oh, S. H. Lee, H. S. Song, Y.-S. Ryu, Y. K. Kim, and M. Seo, "Label-free brain tissue imaging using large-area terahertz metamaterials," Biosens. Bioelectron. 170, 112663 (2020).   DOI
2 M. D'Auria, W. J. Otter, J. Hazell, B. T. W. Gillatt, C. LongCollins, N. M. Ridler, and S. Lucyszyn, "3-D printed metalpipe rectangular waveguides," IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1339-1349 (2015).   DOI
3 K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).   DOI
4 Md. R. Hasan, Md. S. Anower, Md. A. Islam, and S. M. A. Razzak, "Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance," Appl. Opt. 55, 4145-4152 (2016).   DOI
5 S. Li, H. Liu, N. Huang, and Q. Sun, "Broadband high birefringence and low dispersion terahertz photonic crystal fiber," J. Opt. 16, 105102 (2014).   DOI
6 K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, "Bendable, low-loss Topas fibers for the terahertz frequency range," Opt. Express 17, 8592-8601 (2009).   DOI
7 M. Midrio, M. P. Singh, and C. G. Someda, "The space filling mode of holey fibers: an analytical vectorial solution," J. Lightwave Technol. 18, 1031-1037 (2000).   DOI
8 R. T. Bise and D. J. Trevor, "Sol-gel derived microstructured fiber: fabrication and characterization," in Optical Fiber Communications Conference-OFC (Optica Publishing Group, 2005), paper OWL6.
9 K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, "Extruded single-mode non-silica glass holey optical fibers," Electron. Lett. 38, 546-547 (2002).   DOI
10 M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, "Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers," Opt. Express 16, 7-12 (2008).   DOI
11 Y. S. Lee, C. G. Lee, Y. Jung, and S. Kim, "Diamond unit cell photonic crystal fiber with high birefringence and low confinement loss based on circular air holes," Appl. Opt. 54, 6140-6145 (2015).   DOI
12 J. Sultana, Md. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, "Highly birefringent elliptical core photonic crystal fiber for terahertz application," Opt. Commun. 407, 92-96 (2018).   DOI
13 S. J. Oh, Y. Hong, K.-Y. Jeong, I. Maeng, J.-S. Suh, J. Yang, and Y.-M. Huh, "Characterization of proton-irradiated polyaniline nanoparticles using terahertz thermal spectroscopy," Crystals 11, 765 (2021).   DOI
14 R. Kaur, M. Islam, P. C. Agarwal, S. Kaur, and G. Kumar, "Terahertz surface plasmons propagation in semiconducting parallel plates waveguide configuration," Europhys. Lett. 134, 38002 (2021).   DOI
15 G. M. Katyba, K. I. Zaytsev, N. V. Chernomyrdin, I. A. Shikunova, G. A. Komandin, V. B. Anzin, S. P. Lebedev, I. E. Spektor, V. E. Karasik, S. O. Yurchenko, I. V. Reshetov, V. N. Kurlov, and M. Skorobogatiy, "Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments," Adv. Opt. Mater. 6, 1800573 (2018).   DOI
16 H. Han, H. Park, M. Cho, and J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).   DOI
17 G. Lee, I. Maeng, C. Kang, M.-K. Oh, and C.-S. Kee, "Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate," Opt. Express 26, 13677-13685 (2018).   DOI
18 T. Yilmaz and O. B. Akan, "On the use of low terahertz band for 5G indoor mobile networks," Comput. Electr. Eng. 48, 164-173 (2015).   DOI
19 G. K. M. Hasanuzzaman, S. Rana, and M. S. Habib, "A novel low loss, highly birefringent photonic crystal fiber in THz regime," IEEE Photon. Technol. Lett. 28, 899-902 (2016).   DOI
20 R. Islam, Md. S. Habib, G. K. M. Hasanuzzaman, S. Rana, and M.d. A. Sadath, "Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance," Opt. Lett. 41, 440-443 (2016).   DOI
21 Y. Zhang, L. Xue, D. Qiao, and Z. Guang, "Porous photonic-crystal fiber with near-zero ultra-flattened dispersion and high birefringence for polarization-maintaining terahertz transmission," Optik 207, 163817 (2020).   DOI
22 M. A. Habib and M. S. Anower, "Design and numerical analysis of highly birefringent single mode fiber in THz regime," Opt. Fiber Technol. 47, 197-203 (2019).   DOI
23 K. Oh and U.-C. Paek, Silica Optical Fiber Technology for Devices and Components: Design Fabrication and International Standards, (Wiley, USA. 2012).
24 S. Atakaramians, S. Afshar V., T. M. Monro, and D. Abbott, "Terahertz dielectric waveguides," Adv. Opt. Photonics 5, 169-215 (2013).   DOI
25 S. F. Kaijage, Z. Ouyang, and X. Jin, "Porous-core photonic crystal fiber for low loss terahertz wave guiding," IEEE Photonics Technol. Lett. 25, 1454-1457 (2013).   DOI
26 L. D. van Putten, J. Gorecki, E. N. Fokoua, V. Apostolopoulos, and F. Poletti, "3D-printed polymer antiresonant waveguides for short-reach terahertz applications," Appl. Opt. 57, 3953-3958 (2018).   DOI
27 I. K. Yakasai, P. E. Abas, H. Syhaimi, and F. Begum, "Low loss and highly birefringent photonic crystal fibre for terahertz applications," Optik 206, 164321 (2020).   DOI
28 Y. S. Lee, H. Choi, B. Kim, C. Kang, I. Maeng, S. J. Oh, S. Kim, and K. Oh, "Low-loss polytetrafluoroethylene hexagonal porous fiber for terahertz pulse transmission in the 6g mobile communication window," IEEE Trans. Microw. Theory Tech. 69, 4623-4630 (2021).   DOI
29 A. Argyros and J. Pla, "Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared," Opt. Express 15, 7713-7719 (2007).   DOI
30 M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, "Microstructured polymer optical fibre," Opt. Express 9, 319-327 (2001).   DOI