Browse > Article
http://dx.doi.org/10.3807/COPP.2022.6.1.032

50 cm of Zirconia, Bismuth and Silica Erbium-doped Fibers for Double-pass Amplification with a Broadband Mirror  

Markom, Arni Munira (School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA)
Muhammad, Ahmad Razif (Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia)
Paul, Mukul Chandra (Fiber Optics and Photonics Division, CSIR-Central Glass and Ceramic Research Institute)
Harun, Sulaiman Wadi (Department of Electrical Engineering, Faculty of Engineering, University of Malaya)
Publication Information
Current Optics and Photonics / v.6, no.1, 2022 , pp. 32-38 More about this Journal
Abstract
Erbium-doped fiber amplifiers (EDFAs) have saturated the technological market but are still widely used in high-speed and long-distance communication systems. To overcome EDFA saturation and limitations, its erbium-doped fiber is co-doped with other materials such as zirconia and bismuth. This article demonstrates and compares the performance using three different fibers as the gain medium for zirconia-erbium-doped fibers (Zr-EDF), bismuth-erbium-doped fibers (Bi-EDF), and commercial silica-erbium-doped fibers (Si- EDF). The optical amplifier was configured with a double-pass amplification system, with a broadband mirror at the end of its configuration to allow double-pass operation in the system. The important parameters in amplifiers such as optical properties, optical amplification and noise values were also examined and discussed. All three fibers were 0.5 m long and entered with different input signals: 30 dBm for low input and 10 dBm for high input. Zr-EDF turned out to be the most relevant optical amplifier as it had the highest optical gain, longest transmission distance, highest average flatness gain with minimal jitter, and relevant noise figures suitable for the latest communication technology.
Keywords
Bismuth fiber; Erbium doped fiber amplifier; Optical amplifier; Zirconia fiber;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, "Wideband EDFA based on erbium doped crystalline zirconia yttria alumino silicate fiber," J. Lightwave Technol. 28, 2919-2924 (2010).   DOI
2 E. Lee, J. Luo, B. Sun, J. Ji, V. L. Ramalingam, X. Yu, and Q. Wang, "Flat-gain wide-band thulium-based fiber laser," in Conference on Lasers and Electro-Optics/Pacific Rim (Optical Society of America, 2018), paper F1A.5.
3 H. Ahmad, S. Shahi, and S. W. Harun, "Bismuth-based erbium-doped fiber as a gain medium for L-band amplification and Brillouin fiber laser," Laser Phys. 20, 716-719 (2010).   DOI
4 S. U. Rehman, S. Ullah, P. H. J. Chong, S. Yongchareon, and D. Komosny, "Visible light communication: a system perspective-overview and challenges," Sensors 19, 1153 (2019).   DOI
5 L. Chorchos and J. P. Turkiewicz, "Experimental performance of semiconductor optical amplifiers and praseodymium-doped fiber amplifiers in 1310-nm dense wavelength division multiplexing system," Opt. Eng. 56, 046101 (2017).   DOI
6 J.-B. Trinel, G. L. Cocq, E. R. Andresen, Y. Quiquempois, and L. Bigot, "Latest results and future perspectives on few-mode erbium doped fiber amplifiers," Opt. Fiber Technol. 35, 56-63 (2017).   DOI
7 H. Venghaus and N. Grote, Fiber optic communication: key devices, 2nd ed. (Springer, Switzerland. 2017).
8 B. Mukherjee, I. Tomkos, M. Tornatore, P. Winzer, and Y. Zhao, Springer Handbook of Optical Networks (Springer, Switzerland. 2020).
9 R. Piccoli, A. Rovere, Y.-G. Jeong, Y. Jia, L. Zanotto, F. Legare, B. E. Schmidt, R. Morandotti, and L. Razzari, "Extremely broadband terahertz generation via pulse compression of an Ytterbium laser amplifier," Opt. Express 27, 32659-32665 (2019).   DOI
10 S. V. Firstov, K. E. Riumkin, A. M. Khegai, S. V. Alyshev, M. A. Melkumov, V. F. Khopin, F. V. Afanasiev, A. N. Guryanov, and E. M. Dianov, "Wideband bismuth-and erbium-codoped optical fiber amplifier for C+ L+ U-telecommunication band," Laser Phys. Lett. 14, 110001 (2017).   DOI
11 M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded, 2nd ed. (CRC Press, USA. 2001).
12 A. W. Naji, B. A. Hamida, X. S. Cheng, M. A. Mahdi, S. Harun, S. Khan, W. F. AL-Khateeb, A. A. Zaidan, B. B. Zaidan, and H. Ahmad, "Review of erbium-doped fiber amplifier," Int. J. Phys. Sci. 6, 4674-4689 (2011).
13 A. A. Al-Azzawi, A. A. Almukhtar, P. H. Reddy, D. Dutta, S. Das, A. Dhar, M. C. Paul, U. N. Zakaria, H. Ahmad, and S. W. Harun, "Compact and flat-gain fiber optical amplifier with Hafnia-bismuth-erbium co-doped fiber," Optik 170, 56-60 (2018).   DOI
14 M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boy-land, and J. K. Sahu, "Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers," Opt. Lett. 35, 2882-2884 (2010).   DOI
15 A. A. Almukhtar, A. A. Al-Azzawi, X. S. Cheng, P. H. Reddy, A. Dhar, M. C. Paul, H. Ahmad, and S. W. Harun, "Enhanced triple-pass hybrid erbium doped fiber amplifier using distribution pumping scheme in a dual-stage configuration," Optik 204, 164191 (2020).   DOI
16 A. M. Markom, M. C. Paul, A. Dhar, S. Das, M. Pal, S. K. Bhadra, K. Dimyati, M. Yasin, and S. W. Harun, "Performance comparison of enhanced erbium-zirconia-yttria-aluminum co-doped conventional erbium-doped fiber amplifiers," Optik 132, 75-79 (2017).   DOI
17 A. A. Almukhtar, A. A. Al-Azzawi, S. Das, A. Dhar, M. C. Paul, Z. Jusoh, S. W. Harun, and M. Yasin, "An efficient L-band erbium-doped fiber amplifier with zirconia-yttria-aluminum co-doped silica fiber," J. Non Oxide Glasses 10, 65-70 (2018).
18 S. W. Harun, R. Akbari1, H. Arof, and H. Ahmad, "Mode-locked bismuth-based erbium-doped fiber laser with stable and clean femtosecond pulses output," Laser Phys. Lett. 8, 449 (2011).   DOI
19 M. C. Paul, A. Dhar, S. Das, M. Pal, S. K. Bhadra, A. M. Markom, N. S. Rosli, A. Hamzah, H. Ahmad, and S. W. Harun, "Enhanced erbium-zirconia-yttria-aluminum co-doped fiber amplifier," IEEE Photonics J. 7, 7102307 (2015).
20 G. P. Agrawal, Fiber-optic Communication Systems (John Wiley & Sons. USA. 2012).