Browse > Article
http://dx.doi.org/10.3807/COPP.2022.6.1.015

An Optical Graphene-silicon Resonator Phase Shifter Suitable for Universal Linear Circuits  

Liu, Changling (School of Computer and Communication Engineering, University of Science and Technology Beijing)
Wang, Jianping (School of Computer and Communication Engineering, University of Science and Technology Beijing)
Chen, Hongyao (School of Computer and Communication Engineering, University of Science and Technology Beijing)
Li, Zizheng (School of Computer and Communication Engineering, University of Science and Technology Beijing)
Publication Information
Current Optics and Photonics / v.6, no.1, 2022 , pp. 15-22 More about this Journal
Abstract
This paper describes the construction of a phase shifter with low loss and small volume. To construct it, we use the two graphene layers that are separated by a hexagonal boron nitride (hBN) and embedded in a silicon waveguide. The refractive index of the waveguide is adjusted by applying a bias voltage to the graphene sheet to create an optical phase shift. This waveguide is a compact device that only has a radius of 5 ㎛. It has a phase shift of 6π. In addition, the extinction ratio (ER) is 11.6 dB and the insertion loss (IL) is 0.031 dB. Due to its unique characteristics, this device has great potential in silicon on-chip optical interconnection and all-optical multiple-input multiple-output processing.
Keywords
Microring resonator; Optical phase shifter; Photonic integrated circuit;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Fresi, A. Malacarne, V. Sorianello, G. Meloni, P. Velha, M. Midrio, V. Toccafondo, S. Faralli, M. Romagnoli, and L. Poti, "Reconfigurable silicon photonics integrated 16-qam modulator driven by binary electronics," IEEE J. Sel. Top. Quantum Electron. 22, 6100210 (2016).
2 J. Carolan, C. Harrold, C. Sparrow, E. Martin-Lopez, N. J. Russell, J. W. Silverstone, P. J. Shadbolt, N. Matsuda, M. Oguma, M. Itoh, G. D. Marshall, M. G. Thompson, J. C. F. Matthews, T. Hashimoto, J. L. O'Brien, and A. Laing, "Universal linear optics," Science 349, 711-716 (2015).   DOI
3 W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and I. A. Walmsley, "Optimal design for universal multiport interferometers," Optica 3, 1460-1465 (2016).   DOI
4 T. Sato and A. Enokihara, "Ultrasmall design of a universal linear circuit based on microring resonators," Opt. Express 27, 33005-33010 (2019).   DOI
5 S. Luo, Y. Wang, X. Tong, and Z. Wang, "Graphene-based optical modulators," Nanoscale Res. Lett. 10, 199 (2015).   DOI
6 G. Denoyer, C. Cole, A. Santipo, R. Russo, C. Robinson, L. Li, Y. Zhou, J. A. Chen, B. Park, F. Boeuf, S. Cremer, and N. Vulliet, "Hybrid silicon photonic circuits and transceiver for 50 gb/s NRZ transmission over single-mode fiber," J. Light. Technol. 33, 1247-1254 (2015).   DOI
7 M. Ziebell, D. Marris-Morini, G. Rasigade, J.-M. Fedeli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, "40 Gbit/s low-loss silicon optical modulator based on a pipin diode," Opt. Express 20, 10591-10596 (2012).   DOI
8 F. Flamini, N. Spagnolo, N. Viggianiello, A. Crespi, R. Osellame, and F. Sciarrino, "Benchmarking integrated linear-optical architectures for quantum information processing," Sci. Rep. 7, 15133 (2017).   DOI
9 P. Dong, L. Chen, C. Xie, L. L. Buhl, and Y.-K. Chen, "50-Gb/s silicon quadrature phase-shift keying modulator," Opt. Express 20, 21181-21186 (2012).   DOI
10 G. T. Reed, G. Z. Mashanovich, F. Y. Gardes, M. Nedeljkovic, Y. Hu, D. J. Thomson, K. Li, P. R. Wilson, S.-W. Chen, and S. S. Hsu, "Recent breakthroughs in carrier depletion based silicon optical modulators," Nanophotonics 3, 229-245 (2014).   DOI
11 I. Goykhman, U. Sassi, B. Desiatov, N. Mazurski, S. Milana, D. de Fazio, A. Eiden, J. Khurgin, J. Shappir, U. Levy, and A. C. Ferrari, "On-chip integrated, silicon-graphene plasmonic Schottky photodetector, with high responsivity and avalanche photogain," Nano Lett. 16, 3005-3013 (2016).   DOI
12 R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987).   DOI
13 M. Liu, X. Yin, and X. Zhang, "Double-layer graphene optical modulator," Nano Lett. 12, 1482-1485 (2012).   DOI
14 H. Dalir, Y. Xia, Y. Wang, and X. Zhang, "Athermal broadband graphene optical modulator with 35 GHz speed," ACS Photonics 3, 1564-1568 (2016).   DOI
15 J. Liu, Z. U. Khan, C. Wang, H. Zhang, and S. Sarjoghian, "Review of graphene modulators from the low to the high figure of merits," J. Phys. D: Appl. Phys. 53, 233002 (2020).   DOI
16 A. Farmani, "Three-dimensional FDTD analysis of a nano-structured plasmonic sensor in the near-infrared range," J. Opt. Soc. Am. B 36, 401-407 (2019).   DOI
17 M. A. Baqir, A. Farmani, T. Fatima, M. R. Raza, S. F. Shaukat, and A. Mir, "Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range," Appl. Opt. 57, 9447-9454 (2018).   DOI
18 G. T. Reed, Silicon photonics: The State Of The Art (Wiley-Interscience, USA. 2008).
19 D. A. B. Miller, "Energy consumption in optical modulators for interconnects," Opt. Express 20, A293-A308 (2012).
20 Z. Li, H. Chen, J. Wang, H. Lu, and C. Liu, "Compact design of an optical phase shifter packaged with IST microheater used for integrated photonics," Results Phys. 19, 103644 (2020).   DOI
21 Y. Hu, M. Pantouvaki, J. V. Campenhout, S. Brems, I. Asselberghs, C. Huyghebaert, P. Absil, and D. V. Thourhout, "Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon," Laser Photonics Rev. 10, 307-316 (2016).   DOI
22 C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, "Graphene electro-optic modulator with 30 GHz bandwidth," Nat. Photonics 9, 511-514 (2015).   DOI
23 W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser Photonics Rev. 6, 47-73 (2012).   DOI
24 S.-W. Ye, F. Yuan, X.-H. Zou, M. K. Shah, R.-G. Lu, and Y. Liu, "High-speed optical phase modulator based on graphenesilicon waveguide," IEEE J. Sel. Top. Quantum Electron. 23, 76-80 (2017).   DOI
25 A. Farmani and A. Mir, "Graphene sensor based on surface plasmon resonance for optical scanning," IEEE Photonics Technol. Lett. 31, 643-646 (2019).   DOI
26 V. Sorianello, M. Midrio, G. Contestabile, I. Asselberg, J. Van Campenhout, C. Huyghebaerts, I. Goykhman, A. K. Ott, A. C. Ferrari, and M. Romagnoli, "Graphene-silicon phase modulators with gigahertz bandwidth," Nat. Photonics 12, 40-44 (2018).   DOI
27 Y. Meng, S. Ye, Y. Shen, and Q. Xiao, X. Fu, R. Lu, Y. Liu, M. Gong, "Waveguide engineering of graphene optoelectronics-modulators and polarizers," IEEE Photonics J. 10, 6600217 (2018).
28 F. Zhou, R. Hao, X.-F. Jin, X.-M. Zhang, and E.-P. Li, "A graphene-enhanced fiber-optic phase modulator with large linear dynamic range," IEEE Photonics Technol. Lett. 26, 1867-1870 (2014).   DOI
29 G. W. Hanson, "Dyadic green's functions and guided surface waves for a surface conductivity model of graphene," J. Appl. Phys. 103, 064302 (2008).   DOI
30 L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J. M. Tour, and J. Kono, "Terahertz and infrared spectroscopy of gated large-area graphene," Nano Lett. 12, 3711-3715 (2012).   DOI
31 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene photonics and optoelectronics," Nat. Photonics 4, 611-622 (2010).   DOI
32 Y. Meng, R. Lu, Y. Shen, Y. Liu, and M. Gong, "Ultracompact graphene-assisted ring resonator optical router," Opt. Commun. 405, 73-79 (2017).   DOI
33 Y. Ding, X. Zhu, S. Xiao, H. Hu, L. H. Frandsen, N. A. Mortensen, and K. Yvind, "Effective electro-optical modulation with high extinction ratio by a graphene-silicon microring resonator," Nano Lett. 15, 4393-4400 (2015).   DOI
34 S. Ye, Z. Wang, L. Tang, Y. Zhang, R. Lu, and Y. Liu, "Electro-absorption optical modulator using dual-graphene-on-graphene configuration," Opt. Express 22, 26173-26180 (2014).   DOI
35 J. Ctyroky, J. Petracek, P. Kwiecien, I. Richter, and V. Kuzmiak, "Graphene on an optical waveguide: comparison of simulation approaches," Opt. Quantum Electron. 52, 149 (2020).   DOI
36 K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, and H.-J. Chung, "A role for graphene in silicon-based semiconductor devices," Nature 479, 338-344 (2011).   DOI
37 K. Okamoto, Fundamentals of optical waveguides, 3rd ed. (Elsevier Academic, USA. 2006).
38 A. Farmani, A. Mir, and Z. Sharifpour, "Broadly tunable and bidirectional terahertz graphene plasmonic switch based on enhanced Goos-Hanchen effect," Appl. Surf. Sci. 453, 358-364 (2018).   DOI