Browse > Article
http://dx.doi.org/10.3807/COPP.2021.5.6.730

Dependence of Q Factors on Core-cladding Index Contrast in Ring Resonators  

Kim, Younghoon (Department of Electrical Engineering, Sejong University)
Kim, Kyoungyoum (Department of Electrical Engineering, Sejong University)
Moon, Hee-Jong (Department of Electrical Engineering, Sejong University)
Hyun, Kyung-Sook (Department of Electrical Engineering, Sejong University)
Publication Information
Current Optics and Photonics / v.5, no.6, 2021 , pp. 730-737 More about this Journal
Abstract
Transmission spectra are measured from waveguide-coupled ring resonators fabricated with SiNx on SiO2. By using ring resonators with various radii and several index contrasts, the behavior of the quality factors is investigated. As the index contrast decreases, the dominant loss is from scattering for a large resonator, while that changes from scattering loss to bending loss for a small resonator. We verify that the quality factor can be drastically improved by reducing the index contrast in large ring resonators.
Keywords
Bending loss; Index contrast; Micro resonator; Q-factor; Scattering loss;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. X. Xu, A. Densmore, A. Delage, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Express 16, 15137-15148 (2008).   DOI
2 H. E. Dirani, L. Youssef, C. Petit-Etienne, S. Kerdiles, P. Grosse, C. Monat, E. Pargon, and C. Sciancalepore, "Ultra-loss tightly confining Si3N4 waveguides and high-Q microresonators," Opt. Express 27, 30726-30740 (2019).   DOI
3 D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, "Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime," Optica 1, 153-157 (2014).   DOI
4 J. E. Heebner, T. C. Bond, and J. S. Kallman, "Generalized formulations for performance due to bending and edge scattering loss in microdisk resonators," Opt. Express 15, 4452-4473 (2007).   DOI
5 D. J. Blumenthal, R. Heidman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, "Silicon nitride in silicon photonics," Proc. IEEE 106, 2209-2231 (2018).   DOI
6 A. Frigg, A. Boes, G. Ren, I. Abdo, D. Y. Choi, S. Gees, and A. Mitchell, "Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin films," Opt. Express 27, 37795-37805 (2019).   DOI
7 T. Sharma, J. Wang, B. K. Kaushik, Z. Cheng, R. Kumar, Z. Wei, and X. Li, "Review of recent progress on silicon nitride-based photonic integrated circuits," IEEE Access 8, 195436-195446 (2020).   DOI
8 L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, "Silicon photonics: CMOS going optical," Proc. IEEE 97, 1161-1165 (2009).   DOI
9 M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczeil, S. Srinivasan, Y. Tang, and J. E. Bowers, "Hybrid silicon photonic integrated circuit technology," IEEE J. Sel. Top. Quantum Electron. 19, 6100117 (2013).   DOI
10 T. D. Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P. Petropoulos, and F. Y. Gardes, "Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications," J. Phys. D 50, 025106 (2017).   DOI
11 D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, and B. J. Eggleton, "Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection," Opt. Express 21, 23286-23294 (2013).   DOI
12 A. H. K. Park, H. Shoman, M. Ma, S. Shekhar, and L. Chrostowsk, "Ring resonator based polarization diversity WDM receiver," Opt. Express 27, 6147-1657 (2019).   DOI
13 T. Lipka, L. Moldenhauer, J. Muller, and H. K. Trieu, "Photonic integrated circuit components based on amorphous silicon-on-insulator technology," Photon. Res. 4, 126-134 (2016).   DOI
14 X. Xu, V. Fili, W. Szuba, M. Hiraishi, T. Inaba, T. Tawara, H. Omi, and H. Gotoh, "Epitaxial single-crystal rare-earth oxide in horizontal slot waveguide for silicon-based integrated active photonic devices," Opt. Express 28, 14448-14460 (2020).   DOI
15 M. C. Tien, J. F. Bauters, M. J. R. Heck, D. T. Spencer, D. J. Blumenthal, and J. E. Bowers, "Ultra-high quality factor planar Si3N4 ring resonators on Si substrates," Opt. Express 19, 13551-13556 (2011).   DOI
16 T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, "Microring-resonator-based add-drop filters in SiN: fabrication and analysis," Opt. Express 12, 1437-1442 (2004).   DOI
17 Q. Xu, D. Fattal, and R. G. Beausoleil, "Silicon microring resonators with 1.5-μm radius," Opt. Express 16, 4309-4315 (2008).   DOI
18 X. Fang and L. Yang, "Thermal effect analysis of silicon microring optical switch for on-chip interconnect," J. Semicond. 38, 104004 (2017).   DOI
19 Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "Cascade silicon micro-ring modulators for WDM optical interconnection," Opt. Express 14, 9431-9436 (2006).   DOI
20 B. Y. Kim, Y. Okawachi, J. K. Jang, M. Yu, X. Ji, Y Zhao, C. Joshi, M. Lipson, and A. L. Gaeta, "Turn-key, high-efficiency kerr comb source," Opt. Lett. 44, 4475-4478 (2019).   DOI
21 D. G. Rabus, Z. Bian, and A. Shakouri, "Ring Resonator Lasers using Passive Waveguides and Integrated Semiconductor Optical Amplifiers," IEEE J. Sel. Top. Quantum Electron. 13, 1249-1256 (2007).   DOI
22 A. Frigg, A. Boes, G. Ren, T. G. Nguyen, D. Y. Choi, S. Gees, D. Moss, and A. Mitchell, "Optical frequency comb generation with low temperature reactive sputtered silicon nitride waveguides," APL Photon. 5, 011302 (2020).   DOI
23 C. L. Arce, K. D. Vos, T. Claes, K. Komorowska, D. V. Thourhout, and P. Bienstman, "Silicon-on-insulator microring resonator sensor integrated on an optical fiber facet," IEEE Photon. Technol. Lett. 23, 890-892 (2011).   DOI
24 T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, "50-Gb/s ring-resonator-based silicon modulator," Opt. Express 21, 11869-11876 (2013).   DOI
25 M. R. Bryan, D. J. Steiner, J. S. Cognetti, and B. L. Miller, "Design, manufacture, and testing of a silicon nitride ring resonator-based biosensing platform," Proc. SPIE 10629, 106290Z (2018).
26 J. P. R. Lacey and F. P. Payne, "Radiation loss from planar waveguides with random wall imperfections," IEEE Proc. J. 137, 282-289 (1990).
27 P. Rabiei, "Calculation of losses in micro-ring resonators with arbitrary refractive index or shape profile and its applications," J. Light. Technol. 23, 1295 (2005).   DOI
28 W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser Photonics Rev. 6, 47-73 (2012).   DOI
29 L. Chrostowski, S. Grist, J. Flueckiger, W. Shi, X. Wang, E. Ouellet, H. Yun, M. Webb, B. Nie, Z. Liang, K. C. Cheung, S. A. Schmidt, D. M. Ratner, and N. A. F Jaeger, "Silicon photonics resonator sensors and devices," Proc. SPIE 8236, 823620 (2012).   DOI
30 H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, "Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures," Opt. Express 22, 3098-3104 (2014).   DOI
31 S. Xiao, M. H, Khan, H. Shen, and M. Qi, "Modeling and measurement of losses in silicon-on-insulator resonators and bends," Opt. Express 15, 10553-10561 (2007).   DOI
32 M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, "Rayleigh scattering, mode coupling, and optical loss in silicon microdisk," Appl. Phys. Lett. 85, 3693-3695 (2004).   DOI
33 X. Cheng, J. Hong, A. M. Spring, and S. Yokoyama. "Fabrication of a high-Q factor ring resonator using LSCVD deposited Si3N4 film," Opt. Mater. Express 7, 2182-2187 (2017).   DOI
34 M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, and C. T Sullivan, "Fabrication techniques for low-loss silicon nitride waveguides," Proc. SPIE 5720, 109-118 (2005).   DOI
35 S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, "High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator," in Proc. IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings (Lake Buena Vista, USA, Oct. 2007), pp. 537-538.
36 S. Srinivasan, M. Davenport, T. Komljenovic, J. Hulme, D. T. Spencer, and J. E. Bowers, "Coupled-ring-resonator-mirror-based heterogeneous III-V silicon tunable laser," IEEE Photonics J. 7, 2700908 (2015).
37 H.-J. Moon, J.-W. Lee, K.-S. Hyun, and D. C. Jeong, "Lasing of coupled guided modes in modified hollow hexagonal semiconductor cavities," J. Opt. Soc. Korea 18, 377-381 (2014).   DOI
38 S. Xiao, M. H. Khan, H. Shen, and M. Qi, "Compact silicon microring resonators with ultra-low propagation loss in the C band," Opt. Express 15, 14467-14475 (2007).   DOI
39 C. Xiang, W. Jin, J. Guo, C. Williams, A. M. Netherton, L. Chang, P. A. Morton, and J. E. Bowers, "Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III-V/Si heterogeneously integrated tunable lasers," Opt. Express 28, 19926-19936 (2020).   DOI