Browse > Article
http://dx.doi.org/10.3807/COPP.2021.5.5.562

Research on a Spectral Reconstruction Method with Noise Tolerance  

Ye, Yunlong (School of Physics and Optoelectronic Engineering, Xidian University)
Zhang, Jianqi (School of Physics and Optoelectronic Engineering, Xidian University)
Liu, Delian (School of Physics and Optoelectronic Engineering, Xidian University)
Yang, Yixin (School of Physics and Optoelectronic Engineering, Xidian University)
Publication Information
Current Optics and Photonics / v.5, no.5, 2021 , pp. 562-575 More about this Journal
Abstract
As a new type of spectrometer, that based on filters with different transmittance features attracts a lot of attention for its advantages such as small-size, low cost, and simple optical structure. It uses post-processing algorithms to achieve target spectrum reconstruction; therefore, the performance of the spectrometer is severely affected by noise. The influence of noise on the spectral reconstruction results is studied in this paper, and suggestions for solving the spectral reconstruction problem under noisy conditions are given. We first list different spectral reconstruction methods, and through simulations demonstrate that these methods show unsatisfactory performance under noisy conditions. Then we propose to apply the gradient projection for sparse reconstruction (GRSR) algorithm to the spectral reconstruction method. Simulation results show that the proposed method can significantly reduce the influence of noise on the spectral reconstruction process. Meanwhile, the accuracy of the spectral reconstruction results is dramatically improved. Therefore, the practicality of the filter-based spectrometer will be enhanced.
Keywords
Compressive sensing; Noise tolerance; Spectrometer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Huang, G. Xia, S. Jin, M. Hu, S. Wu, and J. Xing, "Denoising analysis of compact CCD-based spectrometer," Optik 157, 693-706 (2018).   DOI
2 Y. Zuo, J. Zhang, and H. Xi, "Influence of detector noise on infrared images," Proc. SPIE 4548, 381-386 (2001).
3 Y. Dai and J. Xu, "The noise analysis and noise reliability indicators of optoelectron coupled devices," Solid-State Electron. 44, 1495-1500 (2000).   DOI
4 U. Kurokawa, B. I. Choi, and C.-C. Chang, "Filter-based miniature spectrometers: spectrum reconstruction using adaptive regularization," IEEE Sens. J. 11, 1556-1563 (2011).   DOI
5 C. C. Chang, N.-T. Lin, U. Kurokawa, and B. I. Choi, "Spectrum reconstruction for filter-array spectrum sensor from sparse template selection," Opt. Eng. 50, 114402 (2011).   DOI
6 H.-A. Lin, H.-Y. Hsu, C.-W. Chang, and C.-S. Huang, "Compact spectrometer system based on a gradient grating period guided-mode resonance filter," Opt. Express 24, 10972-10979 (2016).   DOI
7 T. Pugner, J. Knobbe, and H. Gruger, "Near-infrared grating spectrometer for mobile phone applications," Appl. Spectrosc. 70, 734-745 (2016).   DOI
8 F. Cai, R. Tang, S. Wang, and S. He, "A compact line-detection spectrometer with a Powell lens," Optik 155, 267-272 (2018).   DOI
9 J. Barzilai and J. M. Borwein, "Two-point step size gradient methods," IMA J. Numer. Anal. 8, 141-148 (1988).   DOI
10 H. Yan and Y. Liu, "Improved gradient projection algorithm for deblurred image application," J. Phys.: Conf. Ser. 1575, 012021 (2020).   DOI
11 S. S. Chen, D. L. Donoho, and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Rev. 43, 129-159 (2001).   DOI
12 R.-M. Lan, X.-F. Liu, X.-R. Yao, W.-K. Yu and G.-J. Zhai, "Single-pixel complementary compressive sampling spectrometer," Opt. Commun. 366, 349-353 (2016).   DOI
13 R. Zhu, G.-S. Li, and Y. Guo, "Block-compressed-sensingbased reconstruction algorithm for ghost imaging," OSA Continuum 2, 2834-2843 (2019).   DOI
14 Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University Press, Cambridge, UK, 2012).
15 T. Yang, C. Li, Z. Wang, and H. Ho, "An ultra compact spectrometer based on the optical transmission through a micro interferometer array," Optik 124, 1377-1385 (2013).   DOI
16 Z. Wang and Z. Yu, "Spectral analysis based on compressive sensing in nanophotonic structures," Opt. Express 22, 25608-25614 (2014).   DOI
17 L. Zhang, Y. Zhai, and X. Wang, "Application of Barzilai-Borwein gradient projection for sparse reconstruction algorithm to image reconstruction of electrical capacitance tomography," Flow Meas. Instrum. 65, 45-51 (2019).   DOI
18 D. Yang, C. Chang, G. Wu, B. Luo, and L. Yin, "Compressive ghost imaging of the moving object using the low-order moments," Appl. Sci. 10, 7941 (2020).   DOI
19 D. R. Lobb, "Imaging spectrometers using concentric optics," Proc. SPIE 3118, 339-347 (1997).
20 M. Schardt, P. J. Murr, M. S. Rauscher, A. J. Tremmel, B. R. Wiesent, and A. W. Koch, "Static Fourier transform infrared spectrometer," Opt. Express 24, 7767-7776 (2016).   DOI
21 X. Zhang, Y. Ren, G. Feng, and Z. Qian, "Compressing encrypted image using compressive sensing," in Proc. 2011 Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing (Dalian, China, Oct. 2011), pp. 222-225.
22 H.-T. Fang and D.-S. Huang, "Noise reduction in lidar signal based on discrete wavelet transform," Opt. Commun. 233, 67-76 (2004).   DOI
23 J. J. Davenport, J. Hodgkinson, J. R. Saffell, and R. P. Tatam, "Noise analysis for CCD-based ultraviolet and visible spectrophotometry," Appl. Opt. 54, 8135-8144 (2015).   DOI
24 Z. Wang, X. Ma, R. Chen, G. R. Arce, L. Dong, H.-J. Stock, and Y. Wei, "Comparison of different lithographic source optimization methods based on compressive sensing," Proc. SPIE 11327, 1132716 (2020).
25 D. M. Malioutov, M. Cetin, and A. S. Willsky, "Homotopy continuation for sparse signal representation," Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (Philadelphia, PA, USA, Mar. 2005), Vol. 735, pp. v/733-v/736.
26 K. Koh, S.-J. Kim, and S. Boyd, "An interior-point method for large-scale l1-regularized logistic regression," J. Mach. Learn. Res. 8, 1519-1555 (2007).
27 G. Zonios, "Noise and stray light characterization of a compact CCD spectrophotometer used in biomedical applications," Appl. Opt. 49, 163-169 (2010).   DOI
28 H. Li, D. Xiang, X. Yang, and X. Zhang, "Compressed sensing method for IGBT high-speed switching time on-line monitoring," IEEE Trans. Ind. Electron. 66, 3185-3195 (2019).   DOI
29 M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems," IEEE J. Sel. Top. Signal Processing 1, 586-597 (2007).   DOI
30 J. Oliver, W. Lee, S. Park, and H.-N. Lee, "Improving resolution of miniature spectrometers by exploiting sparse nature of signals," Opt. Express 20, 2613-2625 (2012).   DOI
31 M. Zhang, C. Lu, and C. Liu, "Improved double-threshold denoising method based on the wavelet transform," OSA Continuum 2, 2328-2342 (2019).   DOI
32 J. Bao and M. G. Bawendi, "A colloidal quantum dot spectrometer," Nature 523, 67-70 (2015).   DOI
33 C.-C. Chang and H.-N. Lee, "On the estimation of target spectrum for filter-array based spectrometers," Opt. Express 16, 1056-1061 (2008).   DOI
34 Z. Xu, Z. Wang, M. E. Sullivan, D. J. Brady, S. H. Foulger, and A. Adibi, "Multimodal multiplex spectroscopy using photonic crystals," Opt. Express 11, 2126-2133 (2003).   DOI
35 Z. Leihong, Y. Xiao, Z. Dawei, and C. Jian, "Research on multiple-image encryption scheme based on Fourier transform and ghost imaging algorithm," Curr. Opt. Photon. 2, 315-323 (2018).   DOI
36 X. Ma, M. Li, and J. He, "CMOS-compatible integrated spectrometer based on echelle diffraction grating and MSM photodetector array," IEEE Photonics J. 5, 6600807 (2013).   DOI
37 S. Zheng, H. Cai, J. Song, J. Zou, P. Y. Liu, Z. Lin, D.-L. Kwong, and A.-Q. Liu, "A single-chip integrated spectrometer via tunable microring resonator array," IEEE Photonics J. 11, 6602809 (2019).
38 Z. Yang, T. Albrow-Owen, H. Cui, J. Alexander-Webber, F. Gu, X. Wang, T.-C. Wu, M. Zhuge, C. Williams, P. Wang, A. V. Zayats, W. Cai, L. Dai, S. Hofmann, M. Overend, L. Tong, Q. Yang, Z. Sun, and T. Hasan, "Single-nanowire spectrometers," Science 365, 1017-1020 (2019).   DOI
39 N. Rajaram, T. J. Aramil, K. Lee, J. S. Reichenberg, T. H. Nguyen, and J. W. Tunnell, "Design and validation of a clinical instrument for spectral diagnosis of cutaneous malignancy," Appl. Opt. 49, 142-152 (2010).   DOI
40 Y. C. Ha, J. H. Lee, Y. J. Koh, S. K. Lee, and Y. K. Kim, "Development of an ultraviolet Raman spectrometer for standoff detection of chemicals," Curr. Opt. Photon. 1, 247-251 (2017).   DOI
41 A. A. Masoud, K. Koike, M. G. Atwia, M. M. El-Horiny, and K. S. Gemail, "Mapping soil salinity using spectral mixture analysis of landsat 8 OLI images to identify factors influencing salinization in an arid region," Int. J. Appl. Earth Obs. Geoinf. 83, 101944 (2019).   DOI
42 C. Kim and T. Ji, "Real-time spectroscopic methods for analysis of organic compounds in water," Curr. Opt. Photon. 3, 336-341 (2019).   DOI
43 C. Zhang, G. Cheng, P. Edwards, M.-D. Zhou, S. Zheng, and Z. Liu, "G-Fresnel smartphone spectrometer," Lab. Chip 16, 246-250 (2016).   DOI